Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Nanophysics: Clusters and Fullerenes

Àâòîð: Sattler K.D.

Àííîòàöèÿ:

The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2011

Êîëè÷åñòâî ñòðàíèö: 912

Äîáàâëåíà â êàòàëîã: 09.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$C@C_{60}$ systems, 3-D electrostatic potential field maps      33-2 33-4
$C@C_{60}$ systems, ab initio quantum chemical calculations      33-1
$C@C_{60}$ systems, aromaticity      33-7
$C@C_{60}$ systems, charge density maps      33-3 33-6
$C@C_{60}$ systems, energies calculation of nC@C60 Systems      33-2 33-4
$C@C_{60}$ systems, features of      33-2 33-3
$C@C_{60}$ systems, geometry-optimized neutral structures      33-2 33-3
$C@C_{60}$ systems, Kohn — Sham electronic levels      33-2 33-7
$C@C_{60}$ systems, local density functional calculations      33-9
$C@C_{60}$ systems, molecular orbital energy spectra      33-2 33-4
$C@C_{60}$ systems, Mulliken population analysis      33-2
$C@C_{60}$ systems, ring current effects      33-8
$C@C_{60}$ systems, spin states types      33-2
$C@C_{60}$ systems, structural and electronic properties      33-7
$C@C_{60}$ systems, theoretical investigations      33-4—33-5
$C@C_{60}$ systems, vibrational spectra      33-3 33-5
$C@C_{60}$ systems, vibrational spectrum, $[5C@C_{60}]^{+2}$      33-3 33-6
$C_{20}$ molecule, DFTB method      30-3
$C_{20}$ molecule, hydrogenation reaction      30-2
$C_{20}$ molecule, molecular structure      29-2—29-3
$C_{20}$ molecule, optimized cubic and stable structures      30-2—30-3
$C_{20}$ molecule, single molecular properties, electron affinity      29-4—29-5
$C_{20}$ molecule, single molecular properties, electron correlation      29-5—29-6
$C_{20}$ molecule, single molecular properties, ground state energy      29-3
$C_{20}$ molecule, single molecular properties, mechanical stability      29-4
$C_{20}$ molecule, single molecular properties, thermal stability      29-3—29-4
$C_{20}$ molecule, single molecular properties, vibration frequencies and electron-phonon coupling      29-6
$C_{20}$ molecule, solid properties, cage chains, I- V characteristics      29-8—29-9
$C_{20}$ molecule, solid properties, superconductivity      29-7—29-8
$C_{28}$, band structure      30-5
$C_{28}$, bond length      30-4
$C_{28}$, DFTB method      30-4—30-5
$C_{28}$, exohedral intercalation      30-6
$C_{28}$, structure      30-3—30-4
$C_{36}$, DFTB method      30-7
$C_{36}$, electron diffraction      30-6
$C_{36}$, HUMO-LUMO gap      30-7—30-8
$C_{36}$, rhombohedral and hexagonal structure      30-9
$C_{36}$, supergraphite      30-8—30-9
$C_{50}$, dimerization energy      30-9
$C_{50}$, five fold symmetry      30-11
$C_{50}$, HUMO-LUMO gap      30-10
$C_{54}Si_{6}$, bond length      32-11
$C_{54}Si_{6}$, structural and electronic property      32-11—32-12
$C_{54}Si_{6}$, thermal behaviour      32-12—32-13
$C_{59}Si$, $C_{58}Si_{2}$, bond length      32-7
$C_{59}Si$, $C_{58}Si_{2}$, Kohn — Sham energy level      32-7 32-8
$C_{59}Si$, $C_{58}Si_{2}$, localized orbitals and ELF      32-6—32-9
$C_{59}Si$, $C_{58}Si_{2}$, Mulliken charge      32-8 32-9
$C_{59}Si$, $C_{58}Si_{2}$, structural and electronic property      32-6—32-9
$C_{60^{q+}}$ molecular ions photoionization      35-4—35-6
$C_{60}$, asymmetric fission model      25-7—25-8
$C_{60}$, derivatives, morphology control, AFM images      38-6—38-8
$C_{60}$, derivatives, morphology control, chemical structures      38-4 38-5
$C_{60}$, derivatives, morphology control, SEM images      38-5—38-8
$C_{60}$, electronic states and ionization potentials      25-6—25-7
$C_{60}$, encapsulation, aqueous solution      41-2—41-5
$C_{60}$, encapsulation, organic solvents      41-5—41-9
$C_{60}$, fragmentation      25-7
$C_{60}$, global density of states (GDOS)      46-13—46-15
$C_{60}$, kinetic stability      25-9—25-10
$C_{60}$, laser ablation      51-9
$C_{60}$, low hydroxylated, polyhydroxylated fullerenes, adsorption energies      45-6
$C_{60}$, low hydroxylated, polyhydroxylated fullerenes, MNDO, energy atomic configurations      45-4 45-5
$C_{60}$, low hydroxylated, polyhydroxylated fullerenes, vibrational frequencies      45-3—45-6
$C_{60}$, molecule      35-2—35-3
$C_{60}$, nanowhiskers      38-3
$C_{60}$, negatively charged      25-15—25-16
$C_{60}$, optical properties, polyhydroxylated fullerenes, absorption spectra calculation      45-9 45-10
$C_{60}$, optical properties, polyhydroxylated fullerenes, monotonic decay      45-9
$C_{60}$, optical properties, polyhydroxylated fullerenes, optical absorption measurements      45-7
$C_{60}$, optical properties, polyhydroxylated fullerenes, optical gap vs. HOMO-LUMO energy separation      45-8 45-9
$C_{60}$, optical properties, polyhydroxylated fullerenes, optimized PM3 atomic configurations      45-8
$C_{60}$, optical properties, polyhydroxylated fullerenes, ZINDO methodology      45-8
$C_{60}$, packing defects      49-2
$C_{60}$, Raman spectroscopy, bundling effect      46-25
$C_{60}$, Raman spectroscopy, diameter dependence      46-22—46-23
$C_{60}$, Raman spectroscopy, filling factor      46-24—46-25
$C_{60}$, Raman spectroscopy, laser desorption technique      46-20—46-22
$C_{60}$, Raman spectroscopy, polymerization effect      46-26—46-27
$C_{60}$, Raman spectroscopy, Raman active modes      46-18—46-23
$C_{60}$, Raman spectroscopy, Raman scattering      46-15—46-17
$C_{60}$, single walled carbon nanotubes (SWCNTs)      46-1—46-3
$C_{60}$, structure      51-1—51-2
$C_{60}$, structure and dynamics, carbon nanotubes      46-3—46-4
$C_{60}$, structure and dynamics, derivatives      46-3
$C_{60}$, structure and dynamics, dynamical matrix, peapods      46-9—46-10
$C_{60}$, structure and dynamics, Fourier dynamical matrix      46-10—46-11
$C_{60}$, structure and dynamics, intermolecular interaction      46-9
$C_{60}$, structure and dynamics, intramolecular interaction      46-7—46-9
$C_{60}$, structure and dynamics, Lattice dynamics theory      46-6—46-7
$C_{60}$, structure and dynamics, peapod      46-4—46-5
$C_{60}$, superhydrophobic surfaces, derivatives      38-8—38-9
$C_{60}$, thermodynamic stability      25-8
$C_{60}$, transmission electron microscopy (TEM) imaging      46-1 46-2
$C_{60}$, vibrational properties, phonons, $C_{60}$ peapods      46-13—46-15
$C_{60}$, vibrational properties, phonons, carbon nanotubes      46-12—46-13
$C_{60}$, vibrational properties, phonons, monomer and polymer      46-11—46-12
$C_{70}$, dissociation energies      25-11
$C_{70}$, fission barriers and coulomb limit      25-11—25-12
$C_{70}$, ionization potentials      25-10
$C_{70}$, negatively charged      25-15—25-16
$C_{72}$ and $C_{74}$      33-13—33-14
$C_{80}$, $D_{2h}$ configuration, vibrational analysis      33-16
$C_{80}$, $D_{5d}$ structure      33-16
$C_{80}$, endohedral doping      33-14
$C_{80}$, energy characteristics calculation      33-17
$C_{80}$, geometry-optimized structure      33-14
$C_{80}$, HOMO and LUMO energies      33-15—33-16
$Gd@C_{82}$      42-7
$La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, eigenvalue spectra comparision      45-12 45-13
$La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, lowest-energy atomic configurations      45-11 45-12 45-14
$La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, Perdew — Wang (PW91) gradient-corrected functional      45-11
$La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, spin-down distributions      45-12 45-13
$La@C_{82}$      42-3—42-5
$La_{2}@C_{78}$      42-10—42-11
$Pr@C_{82}$      42-8—42-9
$Sc@C_{82}$      42-5—42-6
$Sc_{2}C_{2}@C_{82}$ ($Sc_{2}@C_{84}$)      42-9
$Tb@C_{82}$      42-7
$Ti_{2}C_{2}@C_{78}$      42-10
$Tm@C_{82}$      42-8
$Y_{2}C_{2}@C_{82}$ and $Y_{2}@C_{82}$      42-9—42-10
$\pi$-conjugated organic molecules      see "Organic clusters PES"
Abutting pentagon defect, $C_{2}$ fragmentation      31-2
Abutting pentagon defect, destabilizing effect      31-1
Aggregation kinetics, cluster      see "Cluster-cluster aggregation (CCA) kinetics"
Alkali and noble metal clusters, electronic structure, atomic structure influence      6-6
Alkali and noble metal clusters, electronic structure, deformation      6-5—6-6
Alkali and noble metal clusters, electronic structure, density functional theory (DFT) calculation      6-6—6-7
Alkali and noble metal clusters, electronic structure, effective single-particle potential derivation      6-3—6-4
Alkali and noble metal clusters, electronic structure, noble metal clusters      6-14—6-16
Alkali and noble metal clusters, electronic structure, photoelectron spectroscopy (PES) measurement      6-7—6-9
Alkali and noble metal clusters, electronic structure, quantum size effect      6-1
Alkali and noble metal clusters, electronic structure, size-dependence      6-1
Alkali and noble metal clusters, electronic structure, sodium clusters      6-9—6-17
Alkali halide clusters      10-7—10-8
Anion beam hole-burning technique      8-7—8-8
Arc discharge method, carbon onions, inert gas atmosphere      24-2—24-3
Arc discharge method, carbon onions, water      24-2—24-3
Arc discharge method, plasma synthesis      21-5
Automorphism      28-2
Benzene clusters      7-19
Bimetallic clusters, applications      4-3
Bimetallic clusters, classification      4-1
Bimetallic clusters, definition      4-1
Bimetallic clusters, free metal clusters, dispersion, surface energy      4-4
Bimetallic clusters, free metal clusters, magic clusters      4-5—4-7
Bimetallic clusters, free metal clusters, size evolution of properties      4-4—4-5
Bimetallic clusters, geometric structure      4-7—4-8
Bimetallic clusters, properties      4-8
Bimetallic clusters, special bimetallic clusters      4-9—4-10
Bimetallic clusters, structure-energy principles      4-8—4-9
Bimetallic clusters, types and clusters formation, free      4-2
Bimetallic clusters, types and clusters formation, passivated      4-2—4-3
Bimetallic clusters, types and clusters formation, supported      4-2
Body-centered-cubic (bcc) structure      30-3
Boron fullerenes, $\alpha$ sheet structure      47-4
Boron fullerenes, applications      47-7—47-8
Boron fullerenes, applications, cancer therapy      47-7
Boron fullerenes, applications, rotor configurations      47-7—47-8
Boron fullerenes, cohesive energies      47-3
Boron fullerenes, electronic structure, HOMO degeneracy      47-6
Boron fullerenes, electronic structure, molecular orbital      47-5
Boron fullerenes, isomerization      47-5
Boron fullerenes, lattice structure      47-1—47-2
Boron fullerenes, nanotubes, band gap dependence      47-4
Boron fullerenes, nanotubes, synthesis      47-5
Boron fullerenes, sructure and symmetry, boron clusters      47-1—47-2
Boron fullerenes, vibrational modes, B3LYP/STO-3G method      47-6
Boron fullerenes, vibrational modes, breathing mode frequency      47-7
Boron nitride fullerenes, definition      49-1
Boron nitride fullerenes, doping, binding sites      49-8
Boron nitride fullerenes, doping, hybrid structure      49-7
Boron nitride fullerenes, doping, magnetic moments      49-9
Boron nitride fullerenes, geometry, continuous model      49-4—49-5
Boron nitride fullerenes, geometry, formation energy per number      49-4
Boron nitride fullerenes, geometry, hexagonal lattices      49-2
Boron nitride fullerenes, geometry, homopolar N-N bond      49-2—49-3
Boron nitride fullerenes, geometry, stoichiometric octahedral fullerenes      49-3
Boron nitride fullerenes, historic review      49-1—49-2
Boron nitride fullerenes, non-stoichiometry, formation energy per number      49-7
Boron nitride fullerenes, non-stoichiometry, homopolar N-N bonds      49-6
Boron nitride fullerenes, non-stoichiometry, relative stability      49-5
Boron nitride nanocones, antiphase boundaries      49-10
Boron nitride nanocones, electronic states      49-10—49-11
Boron nitride nanocones, structure      49-9
Bose — Einstein condensation (BEC), hydrogen clusters      11-5—11-6
Brillouin zone      32-5
Buckminsterfullerene      see also "$C_{60}$"
Buckminsterfullerene, endohedral metallofullerenes separation      22-21—22-22
Buckminsterfullerene, hydrogenated derivatives separation      22-21
Calixarenes      41-5—41-6
Campi scatter plots      15-16
Car — Parrinello molecular dynamics (CPMD)      32-5—32-6
Carbon fullerenes, $C_{20}$, molecular structure      29-2—29-3
Carbon fullerenes, $C_{20}$, single molecular properties      29-3—29-6
Carbon fullerenes, $C_{20}$, solid properties      29-6—29-9
Carbon fullerenes, $C_{60}$ carbon, encapsulation      41-1—41-9
Carbon fullerenes, $C_{60}$ carbon, global density of states (GDOS)      46-13—46-15
Carbon fullerenes, $C_{60}$ carbon, Raman spectroscopy      46-15—46-27
Carbon fullerenes, $C_{60}$ carbon, single walled carbon nanotubes      46-1—46-3 46-26
Carbon fullerenes, $C_{60}$ carbon, structure and dynamics      46-3—46-11
Carbon fullerenes, $C_{60}$ carbon, transmission electron microscopy (TEM) imaging      46-1 46-2
Carbon fullerenes, $C_{60}$ carbon, vibrational properties, phonons      46-11—46-15
Carbon fullerenes, buckminsterfullerene      22-21—22-22
Carbon fullerenes, defects, abutting pentagon defect      31-1—31-2
Carbon fullerenes, defects, observation      31-5—31-6
Carbon fullerenes, defects, Stone — Wales transformation      31-2—31-3
Carbon fullerenes, defects, window-like defects      31-3—31-5
Carbon fullerenes, electronic structure, endohedral fullerenes pospects      42-11
Carbon fullerenes, electronic structure, historic perspectives      42-1
Carbon fullerenes, electronic structure, mass production method      42-2
Carbon fullerenes, electronic structure, metallofullerenes      42-1—42-2
Carbon fullerenes, electronic structure, mono metal atom-entrapped fullerenes      42-3—42-9
Carbon fullerenes, electronic structure, multiple atoms-entrapped fullerenes      42-9—42-11
Carbon fullerenes, electronic structure, photoelectron spectroscopy      42-2—42-3
Carbon fullerenes, fragmentation, collision      27-4
Carbon fullerenes, fragmentation, coronene and dimers      27-4
Carbon fullerenes, fragmentation, dimers and clusters      27-20—27-25
Carbon fullerenes, fragmentation, monomer anions stability      27-17—27-20
Carbon fullerenes, fragmentation, monomer cations      27-5—27-17
Carbon fullerenes, fragmentation, NMR spectra for      27-3
Carbon fullerenes, fullerenes clusters, decahedral sphere packing      37-14
Carbon fullerenes, fullerenes clusters, geometrical structure of      37-14—37-15
Carbon fullerenes, fullerenes clusters, honeycomb layers of spheres      37-13—37-14
Carbon fullerenes, fullerenes clusters, icosahedral packing      37-13
Carbon fullerenes, fullerenes clusters, interaction potential parameters      37-1 37-2
Carbon fullerenes, fullerenes clusters, interaction potentials, $C_{60}$ molecules      37-4—37-5
Carbon fullerenes, fullerenes clusters, mass abundance spectrum      37-2—37-3
Carbon fullerenes, fullerenes clusters, multiply charged clusters      37-11—37-13
Carbon fullerenes, fullerenes clusters, packing of spheres      37-14—37-15
Carbon fullerenes, fullerenes clusters, structure of      37-8—37-11
Carbon fullerenes, fullerenes clusters, van der Waals clusters      37-7 37-8
Carbon fullerenes, fullerol clusters, aqueous systems      44-10—44-11
Carbon fullerenes, fullerol clusters, caged fullerene molecules      44-3—44-4
Carbon fullerenes, fullerol clusters, carbon allotropes, molecular structures      44-2
Carbon fullerenes, fullerol clusters, Derjaguin — Landau — Verwey — Overbeek (DLVO)theory      44-9
Carbon fullerenes, fullerol clusters, dry fullerol powder, infrared spectrum      44-6
Carbon fullerenes, fullerol clusters, electrophoretic mobility      44-8 44-9
Carbon fullerenes, fullerol clusters, fullerol dispersions      44-7
Carbon fullerenes, fullerol clusters, nanotechnology      44-1—44-2
Carbon fullerenes, fullerol clusters, production techniques      44-5
Carbon fullerenes, fullerol clusters, structure of      44-10
Carbon fullerenes, fullerol clusters, titration curve      44-8
Carbon fullerenes, fullerol clusters, transmission electron microscopy (TEM) image      44-9
Carbon fullerenes, fullerol clusters, ultraviolet and visible (UV-vis) absorption spectra      44-6 44-7
Carbon fullerenes, growth      23-1—23-7
Carbon fullerenes, HPLC separation, alkyl-bonded silica stationary phases      22-4—22-8
Carbon fullerenes, HPLC separation, aromatic system, stationary phases      22-15—22-18
Carbon fullerenes, HPLC separation, block diagram of      22-3
Carbon fullerenes, HPLC separation, buckminsterfullerene      22-21—22-22
Carbon fullerenes, HPLC separation, charge-transfer stationary phases      22-9—22-15
Carbon fullerenes, HPLC separation, elution curve, chromatography      22-4
Carbon fullerenes, HPLC separation, polymer stationary phases      22-21
Carbon fullerenes, HPLC separation, porphyrin-bonded silica stationary phase      22-18—22-19
Carbon fullerenes, HPLC separation, properties and applications      22-1
Carbon fullerenes, HPLC separation, pyrenyl ligands, stationary phase      22-19—22-21
Carbon fullerenes, HPLC separation, seperation      22-1—22-2
Carbon fullerenes, metal-coated, alkali earth metals case      43-3
Carbon fullerenes, metal-coated, alkali metal atoms case      43-2—43-3
Carbon fullerenes, metal-coated, applications      43-5—43-6
Carbon fullerenes, metal-coated, coating mechanisms      43-5
Carbon fullerenes, metal-coated, synthesis and characterization      43-1—43-2
Carbon fullerenes, metal-coated, transition metal atoms case      43-3—43-5
Carbon fullerenes, metal-coated, vanadium coating $C_{60}$      43-4
Carbon fullerenes, plasma synthesis, arc discharge method      21-5
Carbon fullerenes, plasma synthesis, arc-jet plasma method      21-5—21-7
Carbon fullerenes, plasma synthesis, characterization of      21-8—21-13
Carbon fullerenes, plasma synthesis, definition      21-2—21-4
Carbon fullerenes, plasma synthesis, fullerene discovery history      21-2
Carbon fullerenes, plasma synthesis, laser ablation method      21-4
Carbon fullerenes, plasma synthesis, nonequilibrium plasma method      21-7—21-8
Carbon fullerenes, plasma synthesis, optimization of      21-13—21-17
Carbon fullerenes, polyhydroxylated, $La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability      45-10—45-14
Carbon fullerenes, polyhydroxylated, density-functional theory (DFT) methodologies      45-3 45-14—45-15
Carbon fullerenes, polyhydroxylated, low hydroxylated $C_{60}$ fullerenes      45-3—45-6
Carbon fullerenes, polyhydroxylated, optical properties, $C_{60}$      45-6—45-10
Carbon fullerenes, polyhydroxylated, solubility      45-1—45-2
Carbon fullerenes, polyhydroxylated, state of the art      45-2—45-3
Carbon fullerenes, Raman spectroscopy      46-15—46-27
Carbon fullerenes, silicon doped, $C_{40}Si_{20}$, $C_{36}Si_{24}$, and $C_{30}Si_{30}$, estimated value      32-14—32-17
Carbon fullerenes, silicon doped, computational methodolgy      32-2—32-6
Carbon fullerenes, silicon doped, electronic and structural property, $C_{59}Si$, $C_{58}Si_{2}$, $C_{54}Si_{6}$      32-6—32-12
Carbon fullerenes, silicon doped, main experimental results      32-2
Carbon fullerenes, silicon doped, thermal behaviour $C_{54}Si_{6}$      32-12—32-13
Carbon fullerenes, solid-state structure, $C_{20}$      30-2—30-3
Carbon fullerenes, solid-state structure, $C_{28}$      30-3—30-6
Carbon fullerenes, solid-state structure, $C_{36}$      30-6—30-9
Carbon fullerenes, solid-state structure, $C_{50}$      30-9—30-11
Carbon fullerenes, stability, $C_{50}$, negatively charged      25-15—25-16
Carbon fullerenes, stability, $C_{58}$ and $C_{68}$ fullerenes      25-12
Carbon fullerenes, stability, $C_{60}$ and $C_{70}$ fullerenes      25-5—25-12 25-15—25-16
Carbon fullerenes, stability, bonding features      25-4—25-5
Carbon fullerenes, stability, kinetic energy release      25-2
Carbon fullerenes, stability, nano-peapods      25-2
Carbon fullerenes, stability, negatively charged fullerenes      25-16—25-18
Carbon fullerenes, stability, rule      25-5—25-6
Carbon fullerenes, stability, singly and doubly charged, $C_{n}$      25-12—25-15
Carbon fullerenes, stability, spherical aromaticity      25-6
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå