Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Handbook of Nanophysics: Clusters and Fullerenes
Àâòîð: Sattler K.D.
Àííîòàöèÿ: The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2011
Êîëè÷åñòâî ñòðàíèö: 912
Äîáàâëåíà â êàòàëîã: 09.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
systems, 3-D electrostatic potential field maps 33-2 33-4
systems, ab initio quantum chemical calculations 33-1
systems, aromaticity 33-7
systems, charge density maps 33-3 33-6
systems, energies calculation of nC@C60 Systems 33-2 33-4
systems, features of 33-2 33-3
systems, geometry-optimized neutral structures 33-2 33-3
systems, Kohn — Sham electronic levels 33-2 33-7
systems, local density functional calculations 33-9
systems, molecular orbital energy spectra 33-2 33-4
systems, Mulliken population analysis 33-2
systems, ring current effects 33-8
systems, spin states types 33-2
systems, structural and electronic properties 33-7
systems, theoretical investigations 33-4—33-5
systems, vibrational spectra 33-3 33-5
systems, vibrational spectrum, 33-3 33-6
molecule, DFTB method 30-3
molecule, hydrogenation reaction 30-2
molecule, molecular structure 29-2—29-3
molecule, optimized cubic and stable structures 30-2—30-3
molecule, single molecular properties, electron affinity 29-4—29-5
molecule, single molecular properties, electron correlation 29-5—29-6
molecule, single molecular properties, ground state energy 29-3
molecule, single molecular properties, mechanical stability 29-4
molecule, single molecular properties, thermal stability 29-3—29-4
molecule, single molecular properties, vibration frequencies and electron-phonon coupling 29-6
molecule, solid properties, cage chains, I- V characteristics 29-8—29-9
molecule, solid properties, superconductivity 29-7—29-8
, band structure 30-5
, bond length 30-4
, DFTB method 30-4—30-5
, exohedral intercalation 30-6
, structure 30-3—30-4
, DFTB method 30-7
, electron diffraction 30-6
, HUMO-LUMO gap 30-7—30-8
, rhombohedral and hexagonal structure 30-9
, supergraphite 30-8—30-9
, dimerization energy 30-9
, five fold symmetry 30-11
, HUMO-LUMO gap 30-10
, bond length 32-11
, structural and electronic property 32-11—32-12
, thermal behaviour 32-12—32-13
, , bond length 32-7
, , Kohn — Sham energy level 32-7 32-8
, , localized orbitals and ELF 32-6—32-9
, , Mulliken charge 32-8 32-9
, , structural and electronic property 32-6—32-9
molecular ions photoionization 35-4—35-6
, asymmetric fission model 25-7—25-8
, derivatives, morphology control, AFM images 38-6—38-8
, derivatives, morphology control, chemical structures 38-4 38-5
, derivatives, morphology control, SEM images 38-5—38-8
, electronic states and ionization potentials 25-6—25-7
, encapsulation, aqueous solution 41-2—41-5
, encapsulation, organic solvents 41-5—41-9
, fragmentation 25-7
, global density of states (GDOS) 46-13—46-15
, kinetic stability 25-9—25-10
, laser ablation 51-9
, low hydroxylated, polyhydroxylated fullerenes, adsorption energies 45-6
, low hydroxylated, polyhydroxylated fullerenes, MNDO, energy atomic configurations 45-4 45-5
, low hydroxylated, polyhydroxylated fullerenes, vibrational frequencies 45-3—45-6
, molecule 35-2—35-3
, nanowhiskers 38-3
, negatively charged 25-15—25-16
, optical properties, polyhydroxylated fullerenes, absorption spectra calculation 45-9 45-10
, optical properties, polyhydroxylated fullerenes, monotonic decay 45-9
, optical properties, polyhydroxylated fullerenes, optical absorption measurements 45-7
, optical properties, polyhydroxylated fullerenes, optical gap vs. HOMO-LUMO energy separation 45-8 45-9
, optical properties, polyhydroxylated fullerenes, optimized PM3 atomic configurations 45-8
, optical properties, polyhydroxylated fullerenes, ZINDO methodology 45-8
, packing defects 49-2
, Raman spectroscopy, bundling effect 46-25
, Raman spectroscopy, diameter dependence 46-22—46-23
, Raman spectroscopy, filling factor 46-24—46-25
, Raman spectroscopy, laser desorption technique 46-20—46-22
, Raman spectroscopy, polymerization effect 46-26—46-27
, Raman spectroscopy, Raman active modes 46-18—46-23
, Raman spectroscopy, Raman scattering 46-15—46-17
, single walled carbon nanotubes (SWCNTs) 46-1—46-3
, structure 51-1—51-2
, structure and dynamics, carbon nanotubes 46-3—46-4
, structure and dynamics, derivatives 46-3
, structure and dynamics, dynamical matrix, peapods 46-9—46-10
, structure and dynamics, Fourier dynamical matrix 46-10—46-11
, structure and dynamics, intermolecular interaction 46-9
, structure and dynamics, intramolecular interaction 46-7—46-9
, structure and dynamics, Lattice dynamics theory 46-6—46-7
, structure and dynamics, peapod 46-4—46-5
, superhydrophobic surfaces, derivatives 38-8—38-9
, thermodynamic stability 25-8
, transmission electron microscopy (TEM) imaging 46-1 46-2
, vibrational properties, phonons, peapods 46-13—46-15
, vibrational properties, phonons, carbon nanotubes 46-12—46-13
, vibrational properties, phonons, monomer and polymer 46-11—46-12
, dissociation energies 25-11
, fission barriers and coulomb limit 25-11—25-12
, ionization potentials 25-10
, negatively charged 25-15—25-16
and 33-13—33-14
, configuration, vibrational analysis 33-16
, structure 33-16
, endohedral doping 33-14
, energy characteristics calculation 33-17
, geometry-optimized structure 33-14
, HOMO and LUMO energies 33-15—33-16
42-7
, electronic behavior and stability, eigenvalue spectra comparision 45-12 45-13
, electronic behavior and stability, lowest-energy atomic configurations 45-11 45-12 45-14
, electronic behavior and stability, Perdew — Wang (PW91) gradient-corrected functional 45-11
, electronic behavior and stability, spin-down distributions 45-12 45-13
42-3—42-5
42-10—42-11
42-8—42-9
42-5—42-6
( ) 42-9
42-7
42-10
42-8
and 42-9—42-10
-conjugated organic molecules see "Organic clusters PES"
Abutting pentagon defect, fragmentation 31-2
Abutting pentagon defect, destabilizing effect 31-1
Aggregation kinetics, cluster see "Cluster-cluster aggregation (CCA) kinetics"
Alkali and noble metal clusters, electronic structure, atomic structure influence 6-6
Alkali and noble metal clusters, electronic structure, deformation 6-5—6-6
Alkali and noble metal clusters, electronic structure, density functional theory (DFT) calculation 6-6—6-7
Alkali and noble metal clusters, electronic structure, effective single-particle potential derivation 6-3—6-4
Alkali and noble metal clusters, electronic structure, noble metal clusters 6-14—6-16
Alkali and noble metal clusters, electronic structure, photoelectron spectroscopy (PES) measurement 6-7—6-9
Alkali and noble metal clusters, electronic structure, quantum size effect 6-1
Alkali and noble metal clusters, electronic structure, size-dependence 6-1
Alkali and noble metal clusters, electronic structure, sodium clusters 6-9—6-17
Alkali halide clusters 10-7—10-8
Anion beam hole-burning technique 8-7—8-8
Arc discharge method, carbon onions, inert gas atmosphere 24-2—24-3
Arc discharge method, carbon onions, water 24-2—24-3
Arc discharge method, plasma synthesis 21-5
Automorphism 28-2
Benzene clusters 7-19
Bimetallic clusters, applications 4-3
Bimetallic clusters, classification 4-1
Bimetallic clusters, definition 4-1
Bimetallic clusters, free metal clusters, dispersion, surface energy 4-4
Bimetallic clusters, free metal clusters, magic clusters 4-5—4-7
Bimetallic clusters, free metal clusters, size evolution of properties 4-4—4-5
Bimetallic clusters, geometric structure 4-7—4-8
Bimetallic clusters, properties 4-8
Bimetallic clusters, special bimetallic clusters 4-9—4-10
Bimetallic clusters, structure-energy principles 4-8—4-9
Bimetallic clusters, types and clusters formation, free 4-2
Bimetallic clusters, types and clusters formation, passivated 4-2—4-3
Bimetallic clusters, types and clusters formation, supported 4-2
Body-centered-cubic (bcc) structure 30-3
Boron fullerenes, sheet structure 47-4
Boron fullerenes, applications 47-7—47-8
Boron fullerenes, applications, cancer therapy 47-7
Boron fullerenes, applications, rotor configurations 47-7—47-8
Boron fullerenes, cohesive energies 47-3
Boron fullerenes, electronic structure, HOMO degeneracy 47-6
Boron fullerenes, electronic structure, molecular orbital 47-5
Boron fullerenes, isomerization 47-5
Boron fullerenes, lattice structure 47-1—47-2
Boron fullerenes, nanotubes, band gap dependence 47-4
Boron fullerenes, nanotubes, synthesis 47-5
Boron fullerenes, sructure and symmetry, boron clusters 47-1—47-2
Boron fullerenes, vibrational modes, B3LYP/STO-3G method 47-6
Boron fullerenes, vibrational modes, breathing mode frequency 47-7
Boron nitride fullerenes, definition 49-1
Boron nitride fullerenes, doping, binding sites 49-8
Boron nitride fullerenes, doping, hybrid structure 49-7
Boron nitride fullerenes, doping, magnetic moments 49-9
Boron nitride fullerenes, geometry, continuous model 49-4—49-5
Boron nitride fullerenes, geometry, formation energy per number 49-4
Boron nitride fullerenes, geometry, hexagonal lattices 49-2
Boron nitride fullerenes, geometry, homopolar N-N bond 49-2—49-3
Boron nitride fullerenes, geometry, stoichiometric octahedral fullerenes 49-3
Boron nitride fullerenes, historic review 49-1—49-2
Boron nitride fullerenes, non-stoichiometry, formation energy per number 49-7
Boron nitride fullerenes, non-stoichiometry, homopolar N-N bonds 49-6
Boron nitride fullerenes, non-stoichiometry, relative stability 49-5
Boron nitride nanocones, antiphase boundaries 49-10
Boron nitride nanocones, electronic states 49-10—49-11
Boron nitride nanocones, structure 49-9
Bose — Einstein condensation (BEC), hydrogen clusters 11-5—11-6
Brillouin zone 32-5
Buckminsterfullerene see also " "
Buckminsterfullerene, endohedral metallofullerenes separation 22-21—22-22
Buckminsterfullerene, hydrogenated derivatives separation 22-21
Calixarenes 41-5—41-6
Campi scatter plots 15-16
Car — Parrinello molecular dynamics (CPMD) 32-5—32-6
Carbon fullerenes, , molecular structure 29-2—29-3
Carbon fullerenes, , single molecular properties 29-3—29-6
Carbon fullerenes, , solid properties 29-6—29-9
Carbon fullerenes, carbon, encapsulation 41-1—41-9
Carbon fullerenes, carbon, global density of states (GDOS) 46-13—46-15
Carbon fullerenes, carbon, Raman spectroscopy 46-15—46-27
Carbon fullerenes, carbon, single walled carbon nanotubes 46-1—46-3 46-26
Carbon fullerenes, carbon, structure and dynamics 46-3—46-11
Carbon fullerenes, carbon, transmission electron microscopy (TEM) imaging 46-1 46-2
Carbon fullerenes, carbon, vibrational properties, phonons 46-11—46-15
Carbon fullerenes, buckminsterfullerene 22-21—22-22
Carbon fullerenes, defects, abutting pentagon defect 31-1—31-2
Carbon fullerenes, defects, observation 31-5—31-6
Carbon fullerenes, defects, Stone — Wales transformation 31-2—31-3
Carbon fullerenes, defects, window-like defects 31-3—31-5
Carbon fullerenes, electronic structure, endohedral fullerenes pospects 42-11
Carbon fullerenes, electronic structure, historic perspectives 42-1
Carbon fullerenes, electronic structure, mass production method 42-2
Carbon fullerenes, electronic structure, metallofullerenes 42-1—42-2
Carbon fullerenes, electronic structure, mono metal atom-entrapped fullerenes 42-3—42-9
Carbon fullerenes, electronic structure, multiple atoms-entrapped fullerenes 42-9—42-11
Carbon fullerenes, electronic structure, photoelectron spectroscopy 42-2—42-3
Carbon fullerenes, fragmentation, collision 27-4
Carbon fullerenes, fragmentation, coronene and dimers 27-4
Carbon fullerenes, fragmentation, dimers and clusters 27-20—27-25
Carbon fullerenes, fragmentation, monomer anions stability 27-17—27-20
Carbon fullerenes, fragmentation, monomer cations 27-5—27-17
Carbon fullerenes, fragmentation, NMR spectra for 27-3
Carbon fullerenes, fullerenes clusters, decahedral sphere packing 37-14
Carbon fullerenes, fullerenes clusters, geometrical structure of 37-14—37-15
Carbon fullerenes, fullerenes clusters, honeycomb layers of spheres 37-13—37-14
Carbon fullerenes, fullerenes clusters, icosahedral packing 37-13
Carbon fullerenes, fullerenes clusters, interaction potential parameters 37-1 37-2
Carbon fullerenes, fullerenes clusters, interaction potentials, molecules 37-4—37-5
Carbon fullerenes, fullerenes clusters, mass abundance spectrum 37-2—37-3
Carbon fullerenes, fullerenes clusters, multiply charged clusters 37-11—37-13
Carbon fullerenes, fullerenes clusters, packing of spheres 37-14—37-15
Carbon fullerenes, fullerenes clusters, structure of 37-8—37-11
Carbon fullerenes, fullerenes clusters, van der Waals clusters 37-7 37-8
Carbon fullerenes, fullerol clusters, aqueous systems 44-10—44-11
Carbon fullerenes, fullerol clusters, caged fullerene molecules 44-3—44-4
Carbon fullerenes, fullerol clusters, carbon allotropes, molecular structures 44-2
Carbon fullerenes, fullerol clusters, Derjaguin — Landau — Verwey — Overbeek (DLVO)theory 44-9
Carbon fullerenes, fullerol clusters, dry fullerol powder, infrared spectrum 44-6
Carbon fullerenes, fullerol clusters, electrophoretic mobility 44-8 44-9
Carbon fullerenes, fullerol clusters, fullerol dispersions 44-7
Carbon fullerenes, fullerol clusters, nanotechnology 44-1—44-2
Carbon fullerenes, fullerol clusters, production techniques 44-5
Carbon fullerenes, fullerol clusters, structure of 44-10
Carbon fullerenes, fullerol clusters, titration curve 44-8
Carbon fullerenes, fullerol clusters, transmission electron microscopy (TEM) image 44-9
Carbon fullerenes, fullerol clusters, ultraviolet and visible (UV-vis) absorption spectra 44-6 44-7
Carbon fullerenes, growth 23-1—23-7
Carbon fullerenes, HPLC separation, alkyl-bonded silica stationary phases 22-4—22-8
Carbon fullerenes, HPLC separation, aromatic system, stationary phases 22-15—22-18
Carbon fullerenes, HPLC separation, block diagram of 22-3
Carbon fullerenes, HPLC separation, buckminsterfullerene 22-21—22-22
Carbon fullerenes, HPLC separation, charge-transfer stationary phases 22-9—22-15
Carbon fullerenes, HPLC separation, elution curve, chromatography 22-4
Carbon fullerenes, HPLC separation, polymer stationary phases 22-21
Carbon fullerenes, HPLC separation, porphyrin-bonded silica stationary phase 22-18—22-19
Carbon fullerenes, HPLC separation, properties and applications 22-1
Carbon fullerenes, HPLC separation, pyrenyl ligands, stationary phase 22-19—22-21
Carbon fullerenes, HPLC separation, seperation 22-1—22-2
Carbon fullerenes, metal-coated, alkali earth metals case 43-3
Carbon fullerenes, metal-coated, alkali metal atoms case 43-2—43-3
Carbon fullerenes, metal-coated, applications 43-5—43-6
Carbon fullerenes, metal-coated, coating mechanisms 43-5
Carbon fullerenes, metal-coated, synthesis and characterization 43-1—43-2
Carbon fullerenes, metal-coated, transition metal atoms case 43-3—43-5
Carbon fullerenes, metal-coated, vanadium coating 43-4
Carbon fullerenes, plasma synthesis, arc discharge method 21-5
Carbon fullerenes, plasma synthesis, arc-jet plasma method 21-5—21-7
Carbon fullerenes, plasma synthesis, characterization of 21-8—21-13
Carbon fullerenes, plasma synthesis, definition 21-2—21-4
Carbon fullerenes, plasma synthesis, fullerene discovery history 21-2
Carbon fullerenes, plasma synthesis, laser ablation method 21-4
Carbon fullerenes, plasma synthesis, nonequilibrium plasma method 21-7—21-8
Carbon fullerenes, plasma synthesis, optimization of 21-13—21-17
Carbon fullerenes, polyhydroxylated, , electronic behavior and stability 45-10—45-14
Carbon fullerenes, polyhydroxylated, density-functional theory (DFT) methodologies 45-3 45-14—45-15
Carbon fullerenes, polyhydroxylated, low hydroxylated fullerenes 45-3—45-6
Carbon fullerenes, polyhydroxylated, optical properties, 45-6—45-10
Carbon fullerenes, polyhydroxylated, solubility 45-1—45-2
Carbon fullerenes, polyhydroxylated, state of the art 45-2—45-3
Carbon fullerenes, Raman spectroscopy 46-15—46-27
Carbon fullerenes, silicon doped, , , and , estimated value 32-14—32-17
Carbon fullerenes, silicon doped, computational methodolgy 32-2—32-6
Carbon fullerenes, silicon doped, electronic and structural property, , , 32-6—32-12
Carbon fullerenes, silicon doped, main experimental results 32-2
Carbon fullerenes, silicon doped, thermal behaviour 32-12—32-13
Carbon fullerenes, solid-state structure, 30-2—30-3
Carbon fullerenes, solid-state structure, 30-3—30-6
Carbon fullerenes, solid-state structure, 30-6—30-9
Carbon fullerenes, solid-state structure, 30-9—30-11
Carbon fullerenes, stability, , negatively charged 25-15—25-16
Carbon fullerenes, stability, and fullerenes 25-12
Carbon fullerenes, stability, and fullerenes 25-5—25-12 25-15—25-16
Carbon fullerenes, stability, bonding features 25-4—25-5
Carbon fullerenes, stability, kinetic energy release 25-2
Carbon fullerenes, stability, nano-peapods 25-2
Carbon fullerenes, stability, negatively charged fullerenes 25-16—25-18
Carbon fullerenes, stability, rule 25-5—25-6
Carbon fullerenes, stability, singly and doubly charged, 25-12—25-15
Carbon fullerenes, stability, spherical aromaticity 25-6
Ðåêëàìà