Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Nanophysics: Clusters and Fullerenes

Àâòîð: Sattler K.D.

Àííîòàöèÿ:

The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2011

Êîëè÷åñòâî ñòðàíèö: 912

Äîáàâëåíà â êàòàëîã: 09.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Ferromagnetic cluster, magnetic moments      10-11
Ferromagnetic cluster, single-sided deflections      10-10—10-11
First-principles molecular dynamics      32-2—32-3
Fluid fullerenes      38-9—38-10
Fluorofullerenes      36-7—36-8
Fourier dynamical matrix, $C_{60}$      46-10—46-11
Fragmentation, cluster, Coulomb fragmentation      15-12—15-14
Fragmentation, cluster, mass spectrometry and cluster stabilities      15-5—15-8
Fragmentation, cluster, multifragmentation      15-14—15-16
Fragmentation, cluster, nucleation theories      15-17—15-19
Fragmentation, cluster, short-time fragmentation dynamics      15-3—15-5
Fragmentation, cluster, unimolecular dissociation theories      15-8—15-11
Fragmentation, fullerenes and clusters      27-20—27-25
Fragmentation, fullerenes, collision      27-4
Fragmentation, fullerenes, collision with neutral atoms or molecules      26-6—26-7
Fragmentation, fullerenes, coronene and dimers      27-4
Fragmentation, fullerenes, coulomb explosion      26-7
Fragmentation, fullerenes, electron impact      26-6—26-7
Fragmentation, fullerenes, endohedral complexes      26-9—26-10
Fragmentation, fullerenes, experiments      26-3
Fragmentation, fullerenes, heating      26-8
Fragmentation, fullerenes, ion impact      26-5—26-6
Fragmentation, fullerenes, kinetic energy release      26-8—26-9
Fragmentation, fullerenes, monomer anions stability      27-17—27-20
Fragmentation, fullerenes, monomer cations      27-5—27-17
Fragmentation, fullerenes, NMR spectra for      27-3
Fragmentation, fullerenes, photofragmentation      26-7—26-8
Fragmentation, fullerenes, surface impact      26-3—26-5
Fragmentation, fullerenes, theory      26-2—26-3
Fragmentation, fullerenes, window-like defects, diatomic vacancy      31-4—31-5
Frank — Kasper polyhedra      51-4
Frank — van der Merwe (FM)      18-8
Free cluster, aggregation kinetics, cluster-cluster      16-1—16-17
Free cluster, alkali and noble metals      see "Alkali and noble metal clusters" "Electronic
Free cluster, bimetallic clusters, applications      4-3
Free cluster, bimetallic clusters, classification      4-1
Free cluster, bimetallic clusters, definition      4-1
Free cluster, bimetallic clusters, free metal clusters      4-4—4-7
Free cluster, bimetallic clusters, geometric structure      4-7—4-8
Free cluster, bimetallic clusters, properties      4-8
Free cluster, bimetallic clusters, special bimetallic clusters      4-9—4-10
Free cluster, bimetallic clusters, structure-energy principles      4-8—4-9
Free cluster, bimetallic clusters, types and clusters formation      4-2—4-3
Free cluster, electric and magnetic dipole moments      10-1—10-11
Free cluster, hydrogen clusters, computer simulation      11-6—11-9
Free cluster, hydrogen clusters, condensed matter, melting      11-1—11-3
Free cluster, hydrogen clusters, magic numbers      11-11
Free cluster, hydrogen clusters, phase transitions      11-3—11-6
Free cluster, hydrogen clusters, quantum melting      11-12—11-14
Free cluster, hydrogen clusters, structure and property      2-1—2-15
Free cluster, hydrogen clusters, superfluidity      11-9—11-10
Free cluster, intense laser field, atomic clusters, cluster dynamics      13-4—13-5
Free cluster, intense laser field, atomic clusters, composite clusters and charge migration      13-11—13-12
Free cluster, intense laser field, atomic clusters, Coulomb explosion      13-8—13-11
Free cluster, intense laser field, atomic clusters, non-perturbative light-matter interaction      13-2—13-4
Free cluster, intense laser field, atomic clusters, resonant light absorption      13-5—13-7
Free cluster, laser-cluster interactions, cluster generation techniques      13-10—13-11
Free cluster, laser-cluster interactions, dual-pulse excitation and angular-resolved emission      13-17—13-18
Free cluster, laser-cluster interactions, femtosecond lasers      13-9
Free cluster, laser-cluster interactions, ionization dynamics      13-14—13-15
Free cluster, laser-cluster interactions, molecular dynamics (MD) simulations      13-7—13-9
Free cluster, laser-cluster interactions, multiphoton ionization      13-2—13-4
Free cluster, laser-cluster interactions, radiation absorption      13-12—13-14
Free cluster, laser-cluster interactions, resonance-enhanced ionization, dual pulses      13-6—13-7
Free cluster, laser-cluster interactions, semiclassical Vlasov and VUU methods      13-4—13-6
Free cluster, laser-cluster interactions, surface-plasmon      13-1
Free cluster, laser-cluster interactions, time-resolved particle and photon emission      13-15—13-16
Free cluster, mercury      3-1—3-8
Free cluster, nucleation and growth, coarsening process      1-5
Free cluster, nucleation and growth, kinetics      1-4—1-5
Free cluster, nucleation and growth, narrow size distribution      1-9—1-10
Free cluster, nucleation and growth, phase separation      1-6—1-9
Free cluster, nucleation and growth, precipitation      1-2
Free cluster, nucleation and growth, thermodynamics      1-2—1-4
Free cluster, photoelectron spectroscopy (PES), ionizing radiation and matter      7-5—7-6
Free cluster, photoelectron spectroscopy (PES), metallic solids      7-20—7-26
Free cluster, photoelectron spectroscopy (PES), molecular gases and liquids      7-17—7-20
Free cluster, photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules      8-1—8-12
Free cluster, photoelectron spectroscopy (PES), rare gas clusters      7-7—7-17
Free cluster, photoelectron spectroscopy (PES), sources      7-6—7-7
Free cluster, photoelectron spectroscopy (PES), spectral intensity      7-3
Free cluster, photoelectron spectroscopy (PES), synchrotron      7-4
Free cluster, photoelectron spectroscopy (PES), time-of-flight (TOF)      7-4
Free cluster, silicon clusters, doped silicon cages      5-6—5-13
Free cluster, silicon clusters, hybridization preferences      5-1
Free cluster, silicon clusters, stabilization      5-2—5-4
Free cluster, substrate interaction      18-1—18-15
Free cluster, superfluidity, helium clusters      12-1—12-13
Free cluster, vibrational spectroscopy, clusters in matrix isolation      9-2—9-3
Free cluster, vibrational spectroscopy, free electron laser (FEL)-based infrared spectroscopy      9-8—9-12
Free cluster, vibrational spectroscopy, gas-phase clusters      9-3—9-8
Free electron laser (FEL)-based infrared spectroscopy, as IR source      9-8—9-10
Free electron laser (FEL)-based infrared spectroscopy, IR laser sources      9-8—9-9
Free electron laser (FEL)-based infrared spectroscopy, multiple photon excitation, dissociation      9-10—9-12
Free electron laser (FEL)-based infrared spectroscopy, multiple photon excitation, ionization      9-12
Free electron laser (FEL)-based infrared spectroscopy, multiple photon excitation, mechanism      9-10
Fullerene monomer anions, stability, dianions observations      27-19
Fullerene monomer anions, stability, electron affinity (EA)      27-18 27-19
Fullerene monomer anions, stability, projectile velocity effects, collisions      27-18
Fullerene monomer cations, coincidence spectrum      27-8
Fullerene monomer cations, DFT calculated sequential ionization energies      27-12
Fullerene monomer cations, dissociation energy (DE)      27-5 27-6
Fullerene monomer cations, fission barrier (FE)      27-5 27-6
Fullerene monomer cations, fragmentation spectrum for      27-12
Fullerene monomer cations, highest occupied molecular orbital (HOMO)      27-11
Fullerene monomer cations, kinetic energy release distributions      27-17
Fullerene monomer cations, mass spectrometric observation of      27-9
Fullerene monomer cations, nuclear fragmentation processes      27-15
Fullerene monomer cations, Rice — Ramsperger — Kassel (RRK) theory      27-14
Fullerene monomer cations, semiempirical fission barriers      27-16
Fullerene monomer cations, slow highly charged      27-10
Fullerene suspensions in water, clusters of $C_{60}$      40-5—40-6
Fullerene suspensions in water, host-guest complexes and micelles      40-3—40-5
Fullerene suspensions in water, hydrophilic groups attachment      40-5
Fullerene suspensions, applications of      40-7
Fullerene suspensions, endohedral fullerenes      40-6—40-7
Fullerene suspensions, pristine fullerenes solubility      40-2—40-3
Fullerene suspensions, solubility of      40-7—40-8
Fullerene suspensions, structures of      40-1—40-2
Fullerene suspensions, toxicity, health, and environmental issues      40-6
Fullerene-based electron acceptors, electron acceptor moieties      36-2—36-3
Fullerene-based electron acceptors, electronegative atoms      36-3—36-5
Fullerene-based electron acceptors, endohedral fullerenes      36-8—36-9
Fullerene-based electron acceptors, fluorofullerenes      36-7—36-8
Fullerene-based electron acceptors, fullerene derivatives      36-1
Fullerene-based electron acceptors, heterofullerenes      36-6—36-7
Fullerene-based electron acceptors, organic photovoltaics      36-9—36-12
Fullerene-based electron acceptors, periconjugative effect      36-5—36-6
Fullerene-based electron acceptors, pyrrolidinium salts      36-6
Fullerene-based electron acceptors, structures of, $N@C_{60}$      36-8
Fullerene-based electron acceptors, structures of, anthraquinone (20)      36-4 36-5
Fullerene-based electron acceptors, structures of, azafulleroid (45)      36-11
Fullerene-based electron acceptors, structures of, azaheterofullerene dimer      37 36-7
Fullerene-based electron acceptors, structures of, fluorophore-heterofullerene conjugates      38 36-7
Fullerene-based electron acceptors, structures of, Fullerene-based electron acceptors, structures of, fullerotriazolines (24-25)      36-3—36-5
Fullerene-based electron acceptors, structures of, isoxazolo[60]fullerenes      13-18 36-4
Fullerene-based electron acceptors, structures of, ketolactam (46)      36-11
Fullerene-based electron acceptors, structures of, p-benzoquinone (19)      36-4 36-5
Fullerene-based electron acceptors, structures of, poly(3-hexylthiophene) (P3HT)      36-10
Fullerene-based electron acceptors, structures of, polymer MDMO-PPV      36-11
Fullerene-based electron acceptors, structures of, polymer solar cells      36-12
Fullerene-based electron acceptors, structures of, pyrazolino[60]fullerenes (22-23)      36-3—36-5
Fullerene-based electron acceptors, structures of, pyrrolidinium salts      36-6 36-7
Fullerene-based electron acceptors, structures of, quinones      36-2 36-3 36-5
Fullerene-based electron acceptors, structures of, TCAQ (21)      36-4 36-5
Fullerene-based electron acceptors, structures of, triads 10 and 11      36-3 36-4
Fullerene-based electron acceptors, structures of, trinitroflrenone-$C_{60}$      12 36-3 36-4
Fullerene-based electron acceptors, structures of, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)      36-10
Fullerene-like III-V binary compounds, ab initio methods      50-4—50-5
Fullerene-like III-V binary compounds, delta-self-consistent-field (ASCF) scheme      50-4
Fullerene-like III-V binary compounds, ground-state geometries      50-2
Fullerene-like III-V binary compounds, HOMO-LUMO gap, exciton binding energy      50-7
Fullerene-like III-V binary compounds, HOMO-LUMO gap, first intense dipole-allowed electronic transition      50-8—50-9
Fullerene-like III-V binary compounds, HOMO-LUMO gap, TD-DFT result, NWChem      50-6
Fullerene-like III-V binary compounds, optical absorption spectra      50-2
Fullerene-like III-V binary compounds, optoelectronic applications      50-10
Fullerene-like III-V binary compounds, point groups      50-3
Fullerene-like III-V binary compounds, quasiparticle (QP) effects      50-2
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), excitonic effect estimation      50-3
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), frequency-space implementation      50-4
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), lowest lying excited electronic states      50-6
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), molecular polarizability      50-5
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), NWCHEM calculations      50-8
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), OCTOPUS calculations      50-6 50-8
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), optical gap      50-7
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), QP-corrected HOMO-LUMO energy gap      50-4
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), real-time propagation method      50-4—50-6
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), Thomas — Reiche — Kuhn dipole sum rule      50-6
Fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT), vertical ionization energy      50-7
Fullerenes clusters, decahedral sphere packing      37-14
Fullerenes clusters, geometrical structure of      37-14—37-15
Fullerenes clusters, honeycomb layers of spheres      37-13—37-14
Fullerenes clusters, icosahedral packing      37-13
Fullerenes clusters, interaction potential parameters      37-1 37-2
Fullerenes clusters, interaction potentials, $C_{60}$ molecules, first-principle calculation, potential      37-4—37-5
Fullerenes clusters, interaction potentials, $C_{60}$ molecules, fullerene dimers binding energy      37-5
Fullerenes clusters, interaction potentials, $C_{60}$ molecules, Girifalco potential      37-4
Fullerenes clusters, interaction potentials, $C_{60}$ molecules, potentials      37-5
Fullerenes clusters, mass abundance spectrum, $(C_{60})_{n}$ clusters      37-2
Fullerenes clusters, mass abundance spectrum, $(C_{70})_{n}$ clusters      37-3
Fullerenes clusters, mass abundance spectrum, $Xe_{n}$ clusters      37-2 37-3
Fullerenes clusters, multiply charged clusters, appearance size, theoretical calculations      37-12—37-13
Fullerenes clusters, multiply charged clusters, hot clusters dynamics      37-13
Fullerenes clusters, multiply charged clusters, liquid-drop model      37-11—37-12
Fullerenes clusters, multiply charged clusters, production of      37-11
Fullerenes clusters, packing of spheres      37-14—37-15
Fullerenes clusters, structure of, Leary's Tetrahedron      37-9 37-11
Fullerenes clusters, structure of, mass abundance spectra, charge dependence      37-8—37-10
Fullerenes clusters, structure of, mass abundance spectra, temperature dependence      37-9 37-10
Fullerenes clusters, structure of, neutral and charged clusters      37-8
Fullerenes clusters, structure of, potential energy      37-5—37-6
Fullerenes clusters, structure of, ranges of forces relation      37-7—37-8
Fullerenes clusters, structure of, structural transitions      37-9—37-11
Fullerenes clusters, structure of, theoretical studies      37-6—37-7
Fullerenes clusters, van der Waals clusters      37-7 37-8
Fulleroids, symmetry, (5,7) type      28-10—28-12
Fulleroids, symmetry, convex polyhedra and planar graphs      28-1—28-2
Fulleroids, symmetry, icosahedral fulleroids      28-6—28-8
Fulleroids, symmetry, local restrictions      28-4—28-6
Fulleroids, symmetry, multi-pentagonal faces      28-8—28-10
Fulleroids, symmetry, octahedral, prismatic, or pyramidal      28-10
Fulleroids, symmetry, point symmetry groups      28-2
Fulleroids, symmetry, polyhedral symmetries and graph automorphisms      28-2—28-3
Fulleroids, symmetry, subgroups      28-8
Fulleroids, symmetry, twofold rotational axis      28-6
Fullerol clusters, aqueous systems      44-10—44-11
Fullerol clusters, Derjaguin — Landau — Verwey — Overbeek (DLVO) theory      44-9
Fullerol clusters, dry fullerol powder, infrared spectrum      44-6
Fullerol clusters, electrophoretic mobility      44-8 44-9
Fullerol clusters, fullerenes, aqueous dispersions      44-4—44-5
Fullerol clusters, fullerenes, caged fullerene molecules      44-3—44-4
Fullerol clusters, fullerenes, carbon allotropes, molecular structures      44-2
Fullerol clusters, fullerol dispersions      44-7
Fullerol clusters, nanotechnology      44-1—44-2
Fullerol clusters, production techniques      44-5
Fullerol clusters, structure of      44-10
Fullerol clusters, titration curve      44-8
Fullerol clusters, transmission electron microscopy (TEM) image      44-9
Fullerol clusters, ultraviolet and visible (UV-vis) absorption spectra      44-6 44-7
Fullerol dispersions      44-7
Gas-phase clusters, vibrational spectroscopy, direct absorption measurements, cavity ring-down spectroscopy (CRDS)      9-4
Gas-phase clusters, vibrational spectroscopy, direct absorption measurements, high-resolution diode laser spectroscopy      9-3—9-4
Gas-phase clusters, vibrational spectroscopy, electronic transitions, anion photoelectron spectroscopy      9-4—9-5
Gas-phase clusters, vibrational spectroscopy, electronic transitions, zero electron kinetic energy spectroscopy      9-5—9-6
Gas-phase clusters, vibrational spectroscopy, He droplets, spectroscopy      9-7—9-8
Gas-phase clusters, vibrational spectroscopy, photodissociation spectroscopy      9-6—9-7
Gas-phase ion mobility      32-2
Gelation transition, finite time gelation      16-9
Gelation transition, gelation kinetics regularization      16-10—16-12
Gelation transition, instantaneous gelation      16-10
Generalized gradient approximations (GGA)      32-3
Giant dipole plasmon resonance      26-6
Girifalco potential      37-4
Growth, free cluster, coarsening process      1-5
Growth, free cluster, kinetics      1-4—1-5
Growth, free cluster, narrow size distribution      1-9—1-10
Growth, free cluster, phase separation      1-6—1-9
Growth, free cluster, precipitation      1-2
Growth, free cluster, thermodynamics      1-2—1-4
Growth, fullerene, geometries      23-1—22-2
Growth, fullerene, growth models      23-3—23-6
Growth, fullerene, open problems      23-6
Growth, fullerene, STM images      23-7
Helium nanodroplets, bulk helium      20-3—20-4
Helium nanodroplets, charged helium droplets, charged droplets multiplication      20-6—20-7
Helium nanodroplets, charged helium droplets, negatively charged droplets      20-7—20-9
Helium nanodroplets, charged helium droplets, positively charged droplets      20-6
Helium nanodroplets, electric and magnetic dipole moments      10-9
Helium nanodroplets, electron attachment      20-17—20-19
Helium nanodroplets, electron impact ionization      20-15—20-17
Helium nanodroplets, fragmentation, cluster ions      20-12—20-13
Helium nanodroplets, ion size      20-19—20-21
Helium nanodroplets, ionization and fragmentation of      20-13—20-14
Helium nanodroplets, mass spectrometric techniques      20-9—20-10
Helium nanodroplets, neutral helium droplets, doped neutral droplets      20-4—20-5
Helium nanodroplets, neutral helium droplets, electronic excitations      20-4—20-5
Helium nanodroplets, neutral helium droplets, synthesis of      20-3—20-4
Helium nanodroplets, organic and biomolecules      20-21—20-22
Helium nanodroplets, rare-gas clusters      20-11—20-12
Helium nanodroplets, rare-gas dimers      20-10—20-11
Helium nanodroplets, superfluidity      2-16
Helium nanodroplets, temperature, cluster ions      20-13
Heterofullerenes      36-6—36-7
Highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, $C_{36}$      30-7—30-8
Highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, $TiSi_{16}$      5-9
Highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, Ag nanoclusters      17-13—17-14
Highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, bimetallic clusters      4-6
Highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, silicon fullerenes      48-7
HOMO-LUMO gap      see "Highest occupied molecular orbital-lowest unoccupied molecular orbital gap"
Hot clusters dynamics      37-13
HPLC separation, fullerenes, alkyl-bonded silica stationary phases, $C_{60}$ and $C_{70}$ HPLC retention reversal study      22-6—22-8
HPLC separation, fullerenes, alkyl-bonded silica stationary phases, comparison of      22-6
HPLC separation, fullerenes, alkyl-bonded silica stationary phases, octadecyl-bonded silica (ODS) stationary phases      22-4—22-5
HPLC separation, fullerenes, alkyl-bonded silica stationary phases, physical parameters, influence      22-5—22-6
HPLC separation, fullerenes, alkyl-bonded silica stationary phases, temperature dependence of      22-6
HPLC separation, fullerenes, aromatic system, stationary phases, $C_{60}$-bonded silica phases      22-16
HPLC separation, fullerenes, aromatic system, stationary phases, calixarene-bonded silica phases      22-16—22-17
HPLC separation, fullerenes, aromatic system, stationary phases, coronenylpentylsilyl-bonded (COP) silica stationary phases      22-15
HPLC separation, fullerenes, aromatic system, stationary phases, heavy atoms      22-15
HPLC separation, fullerenes, aromatic system, stationary phases, humic-acid-bonded silica stationary phase      22-15—22-16
HPLC separation, fullerenes, aromatic system, stationary phases, phthalocyanine-bonded phases      22-17—22-18
HPLC separation, fullerenes, block diagram of      22-3
HPLC separation, fullerenes, buckminsterfullerene, endohedral metallofullerenes separation      22-21—22-22
HPLC separation, fullerenes, buckminsterfullerene, hydrogenated derivatives separation      22-21
HPLC separation, fullerenes, charge-transfer stationary phases, chiral stationary phases      22-14
HPLC separation, fullerenes, charge-transfer stationary phases, liquid-crystal-bonded silica phases      22-14—22-15
HPLC separation, fullerenes, charge-transfer stationary phases, multilegged type stationary phases      22-9 22-12—22-13
HPLC separation, fullerenes, charge-transfer stationary phases, nitro-derivatized phenyl-bonded phases      22-13—22-14
HPLC separation, fullerenes, charge-transfer stationary phases, phenylalkyl-bonded silica phases      22-9—22-11
HPLC separation, fullerenes, elution curve, chromatography      22-4
HPLC separation, fullerenes, polymer stationary phases      22-21
HPLC separation, fullerenes, porphyrin-bonded silica stationary phase      22-18—22-19
HPLC separation, fullerenes, properties and applications      22-1
HPLC separation, fullerenes, pyrenyl ligands, stationary phase, pyrenebutyric acid-modifi ed magnesia-zirconia stationary phases      22-20—22-21
HPLC separation, fullerenes, pyrenyl ligands, stationary phase, pyrenyl-bonded silica stationary phase      22-19—22-20
HPLC separation, fullerenes, seperation      22-1—22-2
Hueckel calculations      30-7
Hydrogen clusters, charged clusters, ab initio quantum chemical method caculation      2-8
Hydrogen clusters, charged clusters, binding energy      2-7—2-8
Hydrogen clusters, charged clusters, bonding and dissociation      2-7
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå