Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Nanophysics: Clusters and Fullerenes

Àâòîð: Sattler K.D.

Àííîòàöèÿ:

The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2011

Êîëè÷åñòâî ñòðàíèö: 912

Äîáàâëåíà â êàòàëîã: 09.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Hydrogen clusters, charged clusters, potential energy surface      2-8—2-9
Hydrogen clusters, computer simulation, Feynman's path integral      11-7—11-8
Hydrogen clusters, computer simulation, mathematical model      11-6—11-7
Hydrogen clusters, computer simulation, Monte Carlo simulation      11-8—11-9
Hydrogen clusters, condensed matter, melting, entropy      11-1—11-2
Hydrogen clusters, condensed matter, melting, helium characteristics      11-2—11-3
Hydrogen clusters, condensed matter, melting, zero-point motion      11-2
Hydrogen clusters, laser irradiation and Coulomb explosion, deuterium, electric dipole moment      2-12
Hydrogen clusters, laser irradiation and Coulomb explosion, deuterium, frequency      2-10—2-11
Hydrogen clusters, laser irradiation and Coulomb explosion, deuterium, kinetic energy and ionization potential      2-11—2-12
Hydrogen clusters, laser irradiation and Coulomb explosion, deuterium, multiple ionization      2-10
Hydrogen clusters, laser irradiation and Coulomb explosion, deuterium, significances      2-9—2-10
Hydrogen clusters, laser irradiation and Coulomb explosion, deuterium, time-dependent density functional theory (TDDFT)      2-10
Hydrogen clusters, liquid-to-gas phase transition      2-9
Hydrogen clusters, magic numbers      11-11
Hydrogen clusters, neutral clusters, ab initio quantum chemical calculations      2-3
Hydrogen clusters, neutral clusters, binding energy      2-3
Hydrogen clusters, neutral clusters, intrinsic derealization      2-5
Hydrogen clusters, neutral clusters, multilayer icosahedral (MIC) growth      2-4
Hydrogen clusters, neutral clusters, quantum Monte Carlo (MC) calculations      2-5
Hydrogen clusters, neutral clusters, sizes      2-3—2-4
Hydrogen clusters, neutral clusters, stability function      2-4
Hydrogen clusters, neutral clusters, thermal effects      2-6—2-7
Hydrogen clusters, nuclear fusion reactions      2-1
Hydrogen clusters, phase transitions, Bose — Einstein condensation (BEC) and superfluidity      11-5—11-6
Hydrogen clusters, phase transitions, cluster melting and freezing      11-4
Hydrogen clusters, phase transitions, finite and infinite system      11-3—11-4
Hydrogen clusters, phase transitions, mixed hydrogen clusters      11-6
Hydrogen clusters, phase transitions, quantum clusters      11-4—11-5
Hydrogen clusters, pressure effects, encapsulation, $C_{60}$ and $C_{82}$      2-13—2-15
Hydrogen clusters, pressure effects, gradual dissociation      2-13
Hydrogen clusters, pressure effects, molecular $(H_{2})_{N}$ clusters formation      2-12
Hydrogen clusters, pressure effects, preferred packing structures      2-12—2-13
Hydrogen clusters, production, cryogenic jets      2-2—2-3
Hydrogen clusters, quantum effects      2-16—2-17
Hydrogen clusters, quantum melting, chemical potential      11-12
Hydrogen clusters, quantum melting, doped clusters and exchange cycles      11-14
Hydrogen clusters, quantum melting, exchange cycle frequency      11-13—11-14
Hydrogen clusters, quantum melting, radial density profile, temperature      11-13
Hydrogen clusters, quantum melting, superfluid fraction      11-12—11-13
Hydrogen clusters, structure, radial density profiles      11-10—11-11
Hydrogen clusters, structure, three-dimensional representation      11-11
Hydrogen clusters, superfluidity      11-9—11-10
Hydrogen clusters, supported clusters      2-15
Hydrogenated $C_{60}$ systems, endohedrally doped, $BeH_{2}@C_{60}H_{2}$ systems, HOMO and LUMO      33-11 33-13
Hydrogenated $C_{60}$ systems, endohedrally doped, $C_{60}H_{2}$ and $Be@C_{60}H_{2}$ structural properties      33-12
Hydrogenated $C_{60}$ systems, endohedrally doped, C-H bond lengths      33-10
Hydrogenated $C_{60}$ systems, endohedrally doped, electrostatic field maps, isomers      33-11
Hydrogenated $C_{60}$ systems, endohedrally doped, geometry-optimized three-dimensional structures      33-10
Hydrogenated $C_{60}$ systems, endohedrally doped, HOMO, LUMO energies and the interfrontier energy gaps ($\Delta E$)      33-11 33-12
Hydrogenated $C_{60}$ systems, endohedrally doped, hydrogenation      33-9
Hydrogenated $C_{60}$ systems, endohedrally doped, In-56 and In-66 types $Be@C_{60}H_{2}$ isomers structures      33-12
Hydrogenated $C_{60}$ systems, endohedrally doped, isomers energies      33-12 33-13
Hydrogenated $C_{60}$ systems, endohedrally doped, molecular orbital energy spectra      33-11 33-12
Hydrogenated $C_{60}$ systems, endohedrally doped, negative charge accumulation      33-10
Hydrogenated $C_{60}$ systems, endohedrally doped, various energies of the systems      33-10
Icosahedral packing, clusters      37-14
Implantation, cluster, clearing-the-way effect      19-8
Implantation, cluster, gas cluster ions      19-10
Implantation, cluster, p-MOSFET, SEM image      19-9
Implantation, cluster, shallow      19-10
Impulsive and electronic excitations, electron impact excitations      15-4
Impulsive and electronic excitations, potential energy surfaces      15-3
Inorganic fullerenes, boron nitride, definition      49-1
Inorganic fullerenes, boron nitride, doping      49-7—49-9
Inorganic fullerenes, boron nitride, geometry      49-2—49-5
Inorganic fullerenes, boron nitride, historic review      49-1—49-2
Inorganic fullerenes, boron nitride, non-stoichiometry      49-5—49-7
Inorganic fullerenes, boron, $\alpha$ sheet structure      47-4
Inorganic fullerenes, boron, cohesive energies      47-3
Inorganic fullerenes, boron, electronic structure      47-5—47-6
Inorganic fullerenes, boron, isomerization      47-5
Inorganic fullerenes, boron, lattice structure      47-1—47-2
Inorganic fullerenes, boron, nanotubes      47-4—47-5
Inorganic fullerenes, boron, sructure and symmetry, boron clusters      47-1—47-2
Inorganic fullerenes, boron, vibrational modes      47-6—47-7
Inorganic fullerenes, fullerene-like III-V binary compounds, ab initio methods      50-4—50-5
Inorganic fullerenes, fullerene-like III-V binary compounds, delta-self-consistent-field (ASCF) scheme      50-4
Inorganic fullerenes, fullerene-like III-V binary compounds, ground-state geometries      50-2
Inorganic fullerenes, fullerene-like III-V binary compounds, HOMO-LUMO gap      50-6—50-9
Inorganic fullerenes, fullerene-like III-V binary compounds, optical absorption spectra      50-2
Inorganic fullerenes, fullerene-like III-V binary compounds, optoelectronic applications      50-10
Inorganic fullerenes, fullerene-like III-V binary compounds, point groups      50-3
Inorganic fullerenes, fullerene-like III-V binary compounds, quasiparticle (QP) effects      50-2
Inorganic fullerenes, fullerene-like III-V binary compounds, time-dependent density functional theory (TD-DFT)      50-3—50-8
Inorganic fullerenes, onion-like compounds, computational techniques and stability      51-10—51-11
Inorganic fullerenes, onion-like compounds, definition      51-1
Inorganic fullerenes, onion-like compounds, experimental realizations      51-9—51-10
Inorganic fullerenes, onion-like compounds, geometric properties      51-2—51-5
Inorganic fullerenes, onion-like compounds, symmetries and building principles      51-5—51-9
Inorganic fullerenes, silicon, bond formation      48-2
Inorganic fullerenes, silicon, combined benfits      48-4
Inorganic fullerenes, silicon, direct method      48-4—48-6
Inorganic fullerenes, silicon, hybridization      48-2
Inorganic fullerenes, silicon, indirect method      48-6—48-12
Inorganic fullerenes, silicon, intermediate approach      48-6—48-7
Inorganic fullerenes, silicon, orbital, combination      48-1—48-2
Inorganic fullerenes, silicon, vs. carbon fullerenes      48-1 48-3—48-4
Intense laser field, atomic clusters      see also "Laser-cluster interactions"
Intense laser field, atomic clusters, cluster dynamics, cluster preparation      13-4
Intense laser field, atomic clusters, cluster dynamics, evolution      13-5
Intense laser field, atomic clusters, cluster dynamics, pump-probe technique      13-5
Intense laser field, atomic clusters, composite clusters and charge migration      13-11—13-12
Intense laser field, atomic clusters, Coulomb explosion, pulse-profile and size-distribution effects      13-9—13-11
Intense laser field, atomic clusters, Coulomb explosion, single-cluster explosion      13-8—13-9
Intense laser field, atomic clusters, non-perturbative light-matter interaction, atoms, energy absorption principle      13-2—13-3
Intense laser field, atomic clusters, non-perturbative light-matter interaction, optical slingshots      13-3—13-4
Intense laser field, atomic clusters, resonant light absorption, damped oscillator      13-5—13-7
Intense laser field, atomic clusters, resonant light absorption, nanoplasma model      13-7
Ion impact, fullerene fragmentation      26-5—26-6
Isolated pentagon rule (IPR)      42-3
Jahn — Teller effect      30-7
Keplerate fullerene-like cages, building principle      51-7
Keplerate fullerene-like cages, icosahedral symmetry      51-9
Keplerate fullerene-like cages, molecular structure      51-8
Keplerate fullerene-like cages, point group symmetry      51-7
Keplerate fullerene-like cages, potential energy surface (PES)      51-10
KERD      see "Kinetic energy release distribution (KERD)"
Kinetic energy release distribution (KERD), fullerene fragmentation      26-8
Lanthanide elements, $Gd@C_{82}$      42-7
Lanthanide elements, $Pr@C_{82}$      42-8—42-9
Lanthanide elements, $Tb@C_{82}$      42-7
Lanthanide elements, $Tm@C_{82}$      42-8
Lanthanide elements, overview      42-7
Laser ablation method, matrix deposition of      9-3
Laser ablation method, plasma synthesis      21-4
Laser ablation method, surface erosion      19-4
Laser irradiation, carbon onion production      24-5
Laser irradiation, hydrogen clusters      2-9—2-12
Laser-cluster interactions      see also "Intense laser field" "Atomic
Laser-cluster interactions, cluster generation techniques      13-10—13-11
Laser-cluster interactions, dual-pulse excitation and angular-resolved emission, acceleration of ions      13-17
Laser-cluster interactions, dual-pulse excitation and angular-resolved emission, asymmetric Coulomb explosion      13-17—13-18
Laser-cluster interactions, dual-pulse excitation and angular-resolved emission, plasmon-enhanced ionization      13-18
Laser-cluster interactions, dual-pulse excitation and angular-resolved emission, surface-plasmon-assisted rescattering in clusters (SPARC)      13-18
Laser-cluster interactions, femtosecond lasers      13-9
Laser-cluster interactions, ionization dynamics      13-14—13-15
Laser-cluster interactions, molecular dynamics (MD) simulations, high energy cluster charge      13-7—13-9
Laser-cluster interactions, multiphoton ionization (MPI)      13-2—13-4
Laser-cluster interactions, radiation absorption, critical radius      13-13—13-14
Laser-cluster interactions, radiation absorption, energy absorption fraction      13-12
Laser-cluster interactions, radiation absorption, energy and laser power absorption, Xe      13-12
Laser-cluster interactions, resonance-enhanced ionization, dual pulses      13-6—13-7
Laser-cluster interactions, semiclassical Vlasov and Vlasov — Uehling — Uhlenbeck (VUU) methods, Hartree term      13-5
Laser-cluster interactions, semiclassical Vlasov and Vlasov — Uehling — Uhlenbeck (VUU) methods, normalized Gaussians      13-5—13-6
Laser-cluster interactions, semiclassical Vlasov and Vlasov — Uehling — Uhlenbeck (VUU) methods, Vlasov — Uehling — Uhlenbeck equation      13-5
Laser-cluster interactions, semiclassical Vlasov and Vlasov — Uehling — Uhlenbeck (VUU) methods, von Neumann equation      13-4
Laser-cluster interactions, semiclassical Vlasov and Vlasov — Uehling — Uhlenbeck (VUU) methods, Wigner transform      13-4
Laser-cluster interactions, surface-plasmon      13-1
Laser-cluster interactions, time-resolved particle and photon emission, CREI concept      13-15—13-16
Laser-cluster interactions, time-resolved particle and photon emission, pulse duration      13-15
Laser-cluster interactions, time-resolved particle and photon emission, x-ray yield      13-16
Laser-induced photon absorption      26-7
Lattice dynamics theory      46-6—46-7
Lead (Pb) clusters, Si(111)7 $\times$ 7 surface, 3D cluster and 2D island surface      17-4
Lead (Pb) clusters, Si(111)7 $\times$ 7 surface, 3D cluster growth      17-4
Lead (Pb) clusters, Si(111)7 $\times$ 7 surface, 3D-2D growth transition      17-5
Lead (Pb) clusters, Si(111)7 $\times$ 7 surface, cluster-island transition      17-5
Lead (Pb) clusters, Si(111)7 $\times$ 7 surface, epitaxial growth modes      17-2—17-3
Lead (Pb) clusters, Si(111)7 $\times$ 7 surface, Fermi discs      17-4
Leary's Tetrahedron structure      37-9 37-11
Lennard — Jones potential      18-2
Liposomes      41-4—41-5
Local density approximation (LDA)      32-3
Macrocyclic compounds      41-6—41-7
Magic clusters, atomic shells model      4-6—4-7
Magic clusters, definition      4-5
Magic clusters, electronic closed shell-geometric transition      17-13—17-14
Magic clusters, electronic shells model      4-5—4-6
Magic clusters, first-principles calculations      17-11—17-13
Magic clusters, size and shape distributions, spatially averaged tunneling spectra      17-11
Magic clusters, size and shape distributions, STM image      17-9—17-10
Magic clusters, substrate effect, adsorption      17-16
Magic clusters, substrate effect, Moire pattern      17-14—17-15
Magnetic bottle PE spectrometer      8-7
Magnetic dipole moments      see "Electric and magnetic dipole moments" "Free
Mayer bond order (MBO)      32-5
Mercury clusters, band gap closure      3-1
Mercury clusters, bond length      3-1—3-2
Mercury clusters, dissociation energies ($D_{e}$)      3-1
Mercury clusters, electron localization function (ELF)      3-3
Mercury clusters, global minimum structures      3-4
Mercury clusters, ionization potentials and static dipole polarizability      3-2
Mercury clusters, liquid mercury, M-NM transition, ab initio potential      3-5
Mercury clusters, liquid mercury, M-NM transition, electronic distribution      3-5
Mercury clusters, liquid mercury, M-NM transition, electrowetting, crystal structure      3-6
Mercury clusters, liquid mercury, M-NM transition, gas-liquid coexistence curve      3-5—3-6
Mercury clusters, liquid mercury, M-NM transition, inelastic x-ray scattering measurements      3-6
Mercury clusters, liquid mercury, M-NM transition, Langmuir monolayer substrate      3-7
Mercury clusters, liquid mercury, M-NM transition, surface layering      3-6—3-7
Mercury clusters, liquid mercury, M-NM transition, threebody potentials      3-5
Mercury clusters, low melting point      3-1
Mercury clusters, medium- to large-sized structures      3-4
Mercury clusters, relativistic and electron correlation effects      3-2
Mercury clusters, solid mercury, mean-field (Hartree — Fock) treatment      3-7
Mercury clusters, solid mercury, pressure changes      3-8
Mercury clusters, solid mercury, rhombohedral lattice structure      3-7
Mercury clusters, solid mercury, wavefunction-based correlation treatment      3-8
Mercury clusters, spectroscopic properties      3-3
Mercury clusters, transition, chemical bond      3-2
Metal surfaces, fullerenes, copper surfaces Cu(111), Cu(110) and thin films, carbon 1s core-level photoemission spectra      39-4
Metal surfaces, fullerenes, copper surfaces Cu(111), Cu(110) and thin films, densities of states (DOS)      39-5
Metal surfaces, fullerenes, copper surfaces Cu(111), Cu(110) and thin films, sheet resistance measurement      39-4
Metal surfaces, fullerenes, copper surfaces Cu(111), Cu(110) and thin films, zero angle orientation      39-3 39-4
Metal surfaces, fullerenes, gold surface Au(110) and Au(111), EELS measurements      39-8
Metal surfaces, fullerenes, gold surface Au(110) and Au(111), frequency Shifts      39-9
Metal surfaces, fullerenes, gold surface Au(110) and Au(111), optimized interface structure      39-7
Metal surfaces, fullerenes, other metal surfaces      39-9—39-11
Metal surfaces, fullerenes, silver surfaces, Ag(111), and Ag(100), adsorption energies      39-6
Metal surfaces, fullerenes, silver surfaces, Ag(111), and Ag(100), Raman frequencies comparison      39-6
Metal surfaces, fullerenes, silver surfaces, Ag(111), and Ag(100), Raman spectra      39-6 39-7
Metal-coated fullerenes, alkali earth metals      43-3
Metal-coated fullerenes, alkali metal atoms      43-2—43-3
Metal-coated fullerenes, applications      43-5—43-6
Metal-coated fullerenes, coating mechanisms      43-5
Metal-coated fullerenes, synthesis and characterization      43-1—43-2
Metal-coated fullerenes, transition metal atoms case      43-3—43-5
Metal-coated fullerenes, vanadium coating $C_{60}$      43-4
Metal-fullerene clusters, electric and magnetic dipole moments      10-6—10-7
Metallofullerenes      31-5—31-6 42-1—42-2
Methane clusters      7-18—7-19
Microreversibility, fragmentation, average kinetic energy release, evaporation      15-11
Microreversibility, fragmentation, phase space theory (PST) vs. molecular dynamics trajectories      15-10
Molecular beam deflection technique      10-11
Molecular orbital treatment, endohedrally doped fullerenes, $C@C_{60}$ systems      33-1—33-9
Molecular orbital treatment, endohedrally doped fullerenes, $C_{72}$ and $C_{74}$      33-13—33-14
Molecular orbital treatment, endohedrally doped fullerenes, $C_{80}$      33-14—33-17
Molecular orbital treatment, endohedrally doped fullerenes, endohedrally doped hydrogenated $C_{60}$ systems      33-9—33-13
Molecular orbital treatment, fullerenes definition      33-1
Molecular orbital treatment, metallofullerenes ($M_{p}@C_{nc}$)      33-17—33-18
Mono metal atom-entrapped fullerenes, group three metal atom, $La@C_{82}$      42-3—42-5
Mono metal atom-entrapped fullerenes, group three metal atom, $Sc@C_{82}$      42-5—42-6
Mono metal atom-entrapped fullerenes, group two metal atom      42-6—42-7
Mono metal atom-entrapped fullerenes, lanthanide elements, $Gd@C_{82}$      42-7
Mono metal atom-entrapped fullerenes, lanthanide elements, $Pr@C_{82}$      42-8—42-9
Mono metal atom-entrapped fullerenes, lanthanide elements, $Tb@C_{82}$      42-7
Mono metal atom-entrapped fullerenes, lanthanide elements, $Tm@C_{82}$      42-8
Mono metal atom-entrapped fullerenes, lanthanide elements, overview      42-7
Monte Carlo calculation, cluster-cluster aggregation kinetics      16-4
Monte Carlo calculation, quantum melting, hydrogen clusters      11-8
Monte Carlo calculation, superfluidity, helium clusters      12-2—12-3
Mulliken population analysis, boron nitride fullerenes and nanocones      49-9
Mulliken population analysis, cluster-substrate interaction      18-14
Mulliken population analysis, silicon-doped fullerenes      32-8
Multilayer icosahedral (MIC)      2-4
Multiphoton ionization (MPI), barrier-suppression ionization (BSI)      13-3
Multiphoton ionization (MPI), Keldysh adiabaticity parameter      13-2
Multiphoton ionization (MPI), nanoplasma and Inverse Bremsstrahlung (IBS)      13-3—13-4
Multiple atoms-entrapped fullerenes, $La_{2}@C_{78}$      42-10—42-11
Multiple atoms-entrapped fullerenes, $Sc_{2}C_{2}@C_{82}$ ($Sc_{2}@C_{84}$)      42-9
Multiple atoms-entrapped fullerenes, $Ti_{2}C_{2}@C_{78}$      42-10
Multiple atoms-entrapped fullerenes, $Y_{2}C_{2}@C_{82}$ and $Y_{2}@C_{82}$      42-9—42-10
Multiple atoms-entrapped fullerenes, nitride-entrapped fullerenes      42-10
Multiple atoms-entrapped fullerenes, overview      42-9
Multiply charged clusters, appearance size, theoretical calculations      37-12—37-13
Multiply charged clusters, hot clusters dynamics      37-13
Multiply charged clusters, liquid-drop model      37-11—37-12
Multiply charged clusters, production of      37-11
Multiscaling aggregating particles, cluster, decaying state      16-12—16-14
Multiscaling aggregating particles, cluster, mass distribution, higher order correlation functions      16-16
Multiscaling aggregating particles, cluster, mass distribution, inverse Laplace transform      16-15
Multiscaling aggregating particles, cluster, steady state      16-14—16-15
Nanocarbon clusters      38-2
Nanopeapods      see also "Carbon nanotube"
Nanopeapods, charged fullerenes      25-2
Nanopeapods, defective fullerenes      31-5—31-6
Neutral and charged clusters      37-8
Nitrogen clusters      7-17
Nonadiabatic dynamics, fragmentation, tight-binding method      15-4
Nonadiabatic dynamics, fragmentation, time-dependent density-functional theory (TDDFT)      15-4
Nonadiabatic dynamics, fragmentation, trajectory surface hopping (TSH) method      15-5—15-6
Nonequilibrium plasma method      21-7—21-8
Nose — Hoover thermostats      32-5
Nucleation and growth, clusters, coarsening process      1-5
Nucleation and growth, clusters, kinetics, compound NCs sythesis      1-4—1-5
Nucleation and growth, clusters, kinetics, stability      1-4
Nucleation and growth, clusters, kinetics, two-stage anneal      1-4
Nucleation and growth, clusters, narrow size distribution, cryogenic plasma systems      1-10
Nucleation and growth, clusters, narrow size distribution, general considerations      1-9
Nucleation and growth, clusters, narrow size distribution, nonequilibrium conditions      1-9—1-10
Nucleation and growth, clusters, narrow size distribution, short thermal anneal      1-10
Nucleation and growth, clusters, phase separation, Binder's derivation      1-6
Nucleation and growth, clusters, phase separation, long-term behavior, scaling      1-7—1-8
Nucleation and growth, clusters, phase separation, short-term behavior, nucleation      1-6—1-7
Nucleation and growth, clusters, phase separation, size distribution shape      1-8—1-9
Nucleation and growth, clusters, precipitation      1-2
Nucleation and growth, clusters, thermodynamics, Gibbs — Thomson relation      1-3
Nucleation and growth, clusters, thermodynamics, metastable region      1-3
Nucleation and growth, clusters, thermodynamics, spinodal curve      1-2—1-3
Nucleation and growth, clusters, thermodynamics, transition probabilities      1-4
Oligoacene cluster anions, isomer, characteristics, $(Nph)_{n^{-}}$, $(Ac)_{n^{-}}$ and $(Tc)_{n^{-}}$      8-9—8-10
Oligoacene cluster anions, isomer, characteristics, isomer I, disordered cluster anions      8-10
Oligoacene cluster anions, isomer, characteristics, isomer II-1, 2D crystal-like cluster anions      8-10—8-11
Oligoacene cluster anions, isomer, characteristics, isomer II-2, multilayered crystal-like cluster anions      8-11—8-12
Oligoacene cluster anions, isomer, coexistence      8-8—8-9
Onion-like inorganic fullerenes, computational techniques and stability, atomization energies      51-11
Onion-like inorganic fullerenes, computational techniques and stability, molecular electronic structure calculations      51-10
Onion-like inorganic fullerenes, definition      59-1
Onion-like inorganic fullerenes, experimental realizations      51-9—51-10
Onion-like inorganic fullerenes, geometric properties      51-2—51-5
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå