Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Handbook of Nanophysics: Clusters and Fullerenes
Àâòîð: Sattler K.D.
Àííîòàöèÿ: The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2011
Êîëè÷åñòâî ñòðàíèö: 912
Äîáàâëåíà â êàòàëîã: 09.07.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Onion-like inorganic fullerenes, geometric properties, Euler's theorem 51-2
Onion-like inorganic fullerenes, geometric properties, isolated pentagon rule (IPR) 51-4
Onion-like inorganic fullerenes, geometric properties, polyhedra 51-3
Onion-like inorganic fullerenes, geometric properties, vertex configuration 51-3
Onion-like inorganic fullerenes, symmetries and building principles 51-5—51-9
Onion-like inorganic fullerenes, symmetries and building principles, Frank — Kasper cages 51-5—51-7
Onion-like inorganic fullerenes, symmetries and building principles, Keplerate fullerene-like cages 51-7—51-9
Optical properties, carbon onions, electromagnetic shielding 34-14
Optical properties, carbon onions, transmittance and absorption 34-13—34-14
Organic clusters, PES, anion beam hole-burning technique 8-7—8-8
Organic clusters, PES, anion photoelectron spectroscopy, magnetic bottle PE spectrometer 8-7
Organic clusters, PES, anion photoelectron spectroscopy, oligoacene cluster anions 8-8—8-12
Organic clusters, PES, anion photoelectron spectroscopy, principle 8-6—8-7
Organic clusters, PES, mass spectrometry of 8-4—8-6
Organic clusters, PES, molecular clusters 8-1—8-2
Organic clusters, PES, polarization effects 8-2—8-3
Organic clusters, PES, production, large molecular clusters 8-3—8-4
Organic clusters, PES, structure and physical properties 8-2
Organic photovoltaics 36-9—36-12
Oxygen clusters 7-17
Pair-binding energy 29-5—29-6
Particle injection, CCA steady state, higher order correlation functions 16-15
Particle injection, CCA steady state, total average particle density 16-14
Particle-surface interactions, adsorption sites 18-3—18-4
Particle-surface interactions, adsorption, chemisorption 18-3
Particle-surface interactions, adsorption, physisorption 18-2—18-3
Particle-surface interactions, surface coverage effect, covalent/metallic bonding 18-5
Particle-surface interactions, surface coverage effect, electrostatic interactions 18-4—18-5
Particle-surface interactions, surface coverage effect, van der Waals forces 18-5—18-7
Periconjugative effect 36-5—36-6
Phonon coupling 26-8
Photoelectron spectroscopy (PES), alkali and noble metal clusters, experimental setup 6-8—6-9
Photoelectron spectroscopy (PES), alkali and noble metal clusters, principle 6-7—6-8
Photoelectron spectroscopy (PES), covalent and ionic solids, diamondoids and alkali halides 7-26
Photoelectron spectroscopy (PES), covalent and ionic solids, selenium and sulfur clusters 7-25
Photoelectron spectroscopy (PES), doped silicon cages 5-10—5-11
Photoelectron spectroscopy (PES), encapsulated fullerenes 42-2—42-3
Photoelectron spectroscopy (PES), ionizing radiation and matter, core-level excitation 7-5—7-6
Photoelectron spectroscopy (PES), ionizing radiation and matter, core-level ionization, XPS 7-5
Photoelectron spectroscopy (PES), ionizing radiation and matter, valence-level ionization, UPS 7-5
Photoelectron spectroscopy (PES), metallic solids, Auger spectroscopy 7-24
Photoelectron spectroscopy (PES), metallic solids, electron spectroscopy 7-20—7-22
Photoelectron spectroscopy (PES), metallic solids, XAS technique 7-22—7-23
Photoelectron spectroscopy (PES), metallic solids, XPS experiments 7-23—7-25
Photoelectron spectroscopy (PES), molecular gases and liquids, benzene clusters 7-19
Photoelectron spectroscopy (PES), molecular gases and liquids, chloromethane clusters 7-19
Photoelectron spectroscopy (PES), molecular gases and liquids, dimers 7-17
Photoelectron spectroscopy (PES), molecular gases and liquids, methane clusters 7-18—7-19
Photoelectron spectroscopy (PES), molecular gases and liquids, nitrogen and oxygen clusters 7-17
Photoelectron spectroscopy (PES), molecular gases and liquids, ultrafast dissociation 7-18
Photoelectron spectroscopy (PES), molecular gases and liquids, water clusters 7-19—7-20
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, anion beam hole-burning technique 8-7—8-8
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, anion photoelectron spectroscopy 8-6—8-7
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, mass spectrometry of 8-4—8-6
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, molecular clusters 8-1—8-2
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, oligoacene cluster anions 8-8—8-12
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, polarization effects 8-2—8-3
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, production 8-3—8-4
Photoelectron spectroscopy (PES), organic clusters, -conjugated organic molecules, structure and physical properties 8-2
Photoelectron spectroscopy (PES), rare gas clusters, heterogeneous cluster composition 7-13—7-15
Photoelectron spectroscopy (PES), rare gas clusters, inner valence studies and interatomic Coulombic decay 7-11—7-12
Photoelectron spectroscopy (PES), rare gas clusters, normal Auger spectroscopy 7-12—7-13
Photoelectron spectroscopy (PES), rare gas clusters, photon energy, XAS and XPS 7-8—7-11
Photoelectron spectroscopy (PES), rare gas clusters, resonant Auger spectroscopy 7-15—7-17
Photoelectron spectroscopy (PES), rare gas clusters, valence-level photoelectron spectroscopy 7-7—7-8
Photoelectron spectroscopy (PES), sources, gaseous 7-6
Photoelectron spectroscopy (PES), sources, liquids 7-6—7-7
Photoelectron spectroscopy (PES), sources, solids 7-7
Photofragmentation, fullerenes 26-7—26-8
Photofragmentation, silicon-doped fullerenes 32-2
Photoionization 35-3—35-4
Physisorption 18-2—18-3
Planar cluster see also "Surface planar metal clusters"
Planar cluster, size and shape distributions, spatially averaged tunneling spectra 17-11
Planar cluster, size and shape distributions, STM image 17-9—17-10
Planar cluster, substrate effect, adsorption 17-16
Planar cluster, substrate effect, Moire pattern 17-14—17-15
Planar conducting film 35-2
Planar embedding 28-2
Plasma synthesis, fullerenes, arc discharge method 21-5
Plasma synthesis, fullerenes, arc-jet plasma method 21-5—21-7
Plasma synthesis, fullerenes, characterization of, in situ diagnostics 21-11—21-13
Plasma synthesis, fullerenes, characterization of, numerical modeling 21-8—21-11
Plasma synthesis, fullerenes, definition 21-2—21-4
Plasma synthesis, fullerenes, fullerene discovery history 21-2
Plasma synthesis, fullerenes, laser ablation method 21-4
Plasma synthesis, fullerenes, nonequilibrium plasma method 21-7—21-8
Plasma synthesis, fullerenes, optimization of 21-13—21-17
Plasmons, molecular ions photoionization 35-4—35-6
Plasmons, and molecules photoionization 35-2—35-4
Plasmons, endohedral fullerene molecules 35-9—35-10
Plasmons, excitation theoretical models, classical Mie scattering 35-7
Plasmons, excitation theoretical models, liquid-drop model 35-8—35-9
Plasmons, excitation theoretical models, quantum-mechanical approximations 35-7—35-8
Plasmons, giant resonances similarities 35-6—35-7
Plasmons, oscillations models 35-1—35-2
Plasmons, planar conducting film 35-2
Plasmons, spherical conducting shell 35-2
Plasmons, structure of 35-3 35-10
Point symmetry groups 28-2—28-4
Polycyclic aromatic hydrocarbons (PAHs) see "Organic clusters PES"
Polyhydroxylated fullerenes, , electronic behavior and stability, eigenvalue spectra comparision 45-12 45-13
Polyhydroxylated fullerenes, , electronic behavior and stability, lowest-energy atomic configurations 45-11 45-12 45-14
Polyhydroxylated fullerenes, , electronic behavior and stability, Perdew — Wang (PW91) gradient-corrected functional 45-11
Polyhydroxylated fullerenes, , electronic behavior and stability, spin-down distributions 45-12 45-13
Polyhydroxylated fullerenes, density-functional theory (DFT) methodologies 45-3 45-14—45-15
Polyhydroxylated fullerenes, low hydroxylated fullerenes, adsorption energies 45-6
Polyhydroxylated fullerenes, low hydroxylated fullerenes, MNDO, energy atomic configurations 45-4 45-5
Polyhydroxylated fullerenes, low hydroxylated fullerenes, vibrational frequencies 45-3—45-6
Polyhydroxylated fullerenes, optical properties, , absorption spectra calculation 45-9 45-10
Polyhydroxylated fullerenes, optical properties, , monotonic decay 45-9
Polyhydroxylated fullerenes, optical properties, , optical absorption measurements 45-7
Polyhydroxylated fullerenes, optical properties, , optical gap vs. HOMO-LUMO energy separation 45-8 45-9
Polyhydroxylated fullerenes, optical properties, , optimized PM3 atomic configurations 45-8
Polyhydroxylated fullerenes, optical properties, , ZINDO methodology 45-8
Polyhydroxylated fullerenes, solubility 45-1—45-2
Polyhydroxylated fullerenes, state of the art 45-2—45-3
Porphyrin dimers 41-7—41-11
Precipitation, nucleation and growth 1-2
Pristine fullerenes, crystalline materials 38-3
Pristine fullerenes, electrochemical replacement method 38-2—38-3
Pristine fullerenes, solubility 40-2—40-3
Pristine fullerenes, supramolecular composites 38-3 38-4
Projectile orientation effect 26-5
Pyrrolidinium salts 36-6
Quantum melting (QM) see also "Hydrogen clusters"
Quantum melting (QM), chemical potential 11-12
Quantum melting (QM), doped clusters and exchange cycles 11-14
Quantum melting (QM), exchange cycle frequency 11-13—11-14
Quantum melting (QM), radial density profile, temperature 11-13
Quantum melting (QM), superfluid fraction 11-12—11-13
Raman spectroscopy, , bundling effect 46-25
Raman spectroscopy, , diameter dependence 46-22—46-23
Raman spectroscopy, , filling factor 46-24—46-25
Raman spectroscopy, , laser desorption technique 46-20—46-22
Raman spectroscopy, , polymerization effect 46-26—46-27
Raman spectroscopy, , Raman active modes 46-21—46-22
Raman spectroscopy, , Raman active modes, carbon nanotubes 46-19—46-20
Raman spectroscopy, , Raman active modes, monomer and polymer 46-18—46-19
Raman spectroscopy, , Raman scattering, bond polarizability model 46-16—46-17
Raman spectroscopy, , Raman scattering, polarizability theory 46-15—46-16
Raman spectroscopy, , Raman scattering, spectral moment's method 46-17
Rice — Ramsperger — Kassel — Marcus (RRKM) theory, fullerene fragmentation 26-6
Rotational symmetry axes 28-3—28-4
Semiconductor and insulator surfaces, fullerenes 39-11—39-12
Silicon clusters, doped silicon cages, infrared spectroscopy 5-11—5-13
Silicon clusters, doped silicon cages, mass spectrometry 5-4—5-6
Silicon clusters, doped silicon cages, photoelectron spectroscopy 5-10—5-11
Silicon clusters, doped silicon cages, quantum chemical calculations 5-7—5-10
Silicon clusters, doped silicon cages, reactivity and chemical-probe studies 5-6—5-7
Silicon clusters, hybridization preferences 5-1
Silicon clusters, stabilization, combined effects 5-3—5-4
Silicon clusters, stabilization, electronic stabilization 5-2—5-3
Silicon clusters, stabilization, geometric stabilization 5-2
Silicon fullerenes vs. carbon fullerenes, buckminsterfullerene structure 48-3
Silicon fullerenes vs. carbon fullerenes, other buckyballs and fullerenes 48-3—48-4
Silicon fullerenes vs. carbon fullerenes, similarities and differences 48-1
Silicon fullerenes, bond formation 48-2
Silicon fullerenes, combined benfits 48-4
Silicon fullerenes, direct method, calculations 48-4
Silicon fullerenes, direct method, distorted structure 48-5
Silicon fullerenes, direct method, magic clusters 48-6
Silicon fullerenes, hybridization 48-2
Silicon fullerenes, indirect method, endohedral doping 48-7—48-8
Silicon fullerenes, indirect method, exohedral doping 48-8—48-12
Silicon fullerenes, intermediate approach 48-6—48-7
Silicon fullerenes, orbital, combination 48-1—48-2
Smoluchowski equation, scaling hypothesis, varied kernel 16-5—16-6
Smoluchowski equation, solutions, constant kernel 16-6—16-7
Sodium clusters, angle-resolved PES 6-16—6-17
Sodium clusters, large 6-13—6-14
Sodium clusters, small 6-9—6-13
SPARC see "Surface-plasmon-assisted rescattering in clusters"
Spinodal curve, nucleation 1-2—1-3
Stability, fullerenes, , negatively charged 25-15—25-16
Stability, fullerenes, and fullerenes, positively charged 25-12
Stability, fullerenes, and fullerenes, negatively charged 25-15—25-16
Stability, fullerenes, fullerenes, positively charged, asymmetric fission model 25-7—25-8
Stability, fullerenes, fullerenes, positively charged, electronic states and ionization potentials 25-6—25-7
Stability, fullerenes, fullerenes, positively charged, fragmentation 25-7
Stability, fullerenes, fullerenes, positively charged, kinetic stability 25-9—25-10
Stability, fullerenes, fullerenes, positively charged, thermodynamic stability 25-8
Stability, fullerenes, fullerenes, positively charged, dissociation energies 25-11
Stability, fullerenes, fullerenes, positively charged, fission barriers and coulomb limit 25-11—25-12
Stability, fullerenes, fullerenes, positively charged, ionization potentials 25-10
Stability, fullerenes, negatively charged fullerenes 25-16—25-18
Stability, fullerenes, pentagon adjacency penalty rule (PAPR) 25-5—25-6
Stability, fullerenes, pentagon rule isolation 25-5
Stability, fullerenes, singly and doubly charged, , dissociation energies 25-14—25-15
Stability, fullerenes, singly and doubly charged, , ionization potentials 25-12
Stability, fullerenes, singly and doubly charged, , stable isomers 25-12
Stability, fullerenes, spherical aromaticity 25-6
Stark shift 27-13
Steinitz' Theorem 28-2
Stochastic Smoluchowski equation, Doi and Zeldovich — Ovchinnikov (DZO) transformation 16-3
Stochastic Smoluchowski equation, imaginary multiplicative noise 16-4
Stone — Wales (SW) transformation, charged fullerenes stability 25-3
Stone — Wales (SW) transformation, definition 31-2—31-3
Stone — Wales (SW) transformation, mechanism 31-2
Stranski — Krastanov (SK) growth 18-9
Structure and topology, fullerenes, definition and nomenclature 25-2—25-3
Structure and topology, fullerenes, nonclassical fullerenes 25-4
Structure and topology, fullerenes, Schlegel diagram 25-4
Structure and topology, fullerenes, sphericity 25-3—25-4
Structure and topology, fullerenes, Stone — Wales (SW) transformation 25-3
Superconductivity 29-7—29-8
Superfluidity, deuterium 2-17
Superfluidity, helium clusters, anisotropic distributions 12-10
Superfluidity, helium clusters, effective rotational constant 12-11—12-13
Superfluidity, helium clusters, excitation spectrum 12-1—12-2
Superfluidity, helium clusters, excited-state energy calculation 12-8
Superfluidity, helium clusters, infrared spectra measurement 12-5—12-6
Superfluidity, helium clusters, isotopes 12-1
Superfluidity, helium clusters, magic numbers 12-8
Superfluidity, helium clusters, moment of inertia 12-7
Superfluidity, helium clusters, Monte Carlo calculations 12-2—12-3
Superfluidity, helium clusters, nanodroplet temperatures 12-2
Superfluidity, helium clusters, nonclassical inertia 12-1
Superfluidity, helium clusters, path-integral simulations 12-11
Superfluidity, helium clusters, pulsed supersonic jet expansions 12-6—12-7
Superfluidity, helium clusters, quantum simulations 12-9
Superfluidity, helium clusters, rotational excitation caculation 12-11
Superfluidity, helium clusters, rotational motion examination 12-4—12-5
Superfluidity, helium clusters, spectroscopic measurement 12-3—12-4
Superfluidity, helium clusters, superfluid helium-4 nanodroplets 12-6
Superfluidity, helium clusters, time-independent Schroedinger equation 12-8
Superfluidity, hydrogen clusters, superfluid fraction 11-9—11-10
Superfluidity, hydrogen clusters, transition temperature 11-5—11-6
Superfluidity, quantum melting 2-17
Superfluidity, superfluid fraction 2-16
Supergraphite 30-8—30-9
Supramolecular assemblies of fullerenes, derivatives, morphology control 38-5—38-8
Supramolecular assemblies of fullerenes, derivatives, superhydrophobic surfaces 38-8—38-9
Supramolecular assemblies of fullerenes, developments 38-10
Supramolecular assemblies of fullerenes, fluid fullerenes 38-9—38-10
Supramolecular assemblies of fullerenes, liquid crystalline assemblies 38-9
Supramolecular assemblies of fullerenes, nanocarbon clusters 38-2
Supramolecular assemblies of fullerenes, pristine assemblies, crystalline materials 38-3
Supramolecular assemblies of fullerenes, pristine assemblies, electrochemical replacement method 38-2—38-3
Supramolecular assemblies of fullerenes, pristine assemblies, supramolecular composites 38-3 38-4
Supramolecular assemblies of fullerenes, solid surfaces assemblies 38-3—38-5
Surface diffusion, energetics, nanopuck formation 17-7—17-8
Surface diffusion, energetics, Pb quantum island deposition 17-8—17-9
Surface diffusion, kinetics 18-9
Surface energy 18-7
Surface erosion, cluster impact, AFM image 19-11
Surface erosion, cluster impact, angular distribution 19-11
Surface erosion, cluster impact, atomic force microscopy image 19-13
Surface erosion, cluster impact, craters 19-10
Surface impact, fullerene fragmentation, MD 26-3
Surface impact, fullerene fragmentation, Tersoff empirical potential 26-4
Surface impact, fullerene fragmentation, trajectory 26-4—26-5
Surface planar metal clusters, experimental procedures and conditions 17-2
Surface planar metal clusters, magic nature, electronic closed shell-geometric transition 17-13—17-14
Surface planar metal clusters, magic nature, first-principles calculations 17-11—17-13
Surface planar metal clusters, magic nature, size and shape distributions 17-9—17-11
Surface planar metal clusters, magic nature, substrate effect 17-14—17-16
Surface planar metal clusters, Pb clusters, Si(111)7 7 surface, 3D cluster and 2D island surface 17-4
Surface planar metal clusters, Pb clusters, Si(111)7 7 surface, 3D cluster growth 17-4
Surface planar metal clusters, Pb clusters, Si(111)7 7 surface, 3D-2D growth transition 17-5
Surface planar metal clusters, Pb clusters, Si(111)7 7 surface, cluster-island transition 17-5
Surface planar metal clusters, Pb clusters, Si(111)7 7 surface, epitaxial growth modes 17-2—17-3
Surface planar metal clusters, Pb clusters, Si(111)7 7 surface, Fermi discs 17-4
Surface planar metal clusters, self-organized growth, substrate characteristics 17-6—17-7
Surface planar metal clusters, self-organized growth, surface diffusion energetics 17-7—17-9
Surface-plasmon-assisted rescattering in clusters (SPARC) 13-18
SW transformation see "Stone-Wales (SW) transformation"
TBMD see "Tight-binding molecular-dynamics (TBMD) simulations"
Thermal treatment, carbonaceous materials, nanodiamond annealing, graphite fragments formation 24-8
Thermal treatment, carbonaceous materials, nanodiamond annealing, graphite/carbon black 24-9
Thermal treatment, carbonaceous materials, nanodiamond annealing, HRTEM image of 24-8
Thermal treatment, carbonaceous materials, nanodiamond annealing, of carbon nanotubes 24-9
Thermal treatment, carbonaceous materials, nanodiamond annealing, of carbon soot 24-9
Thermal treatment, carbonaceous materials, nanodiamond annealing, XRD patterns 24-7
Tight-Binding Method 26-2—26-3
Tight-binding molecular-dynamics (TBMD) simulations 29-3
Trajectory surface hopping (TSH) method 15-5—15-6
Tribological properties, carbon onions 34-14—34-15
van der Waals clusters, commensurate overlayer 18-7
van der Waals clusters, rare-gas clusters 37-7 37-8
van der Waals clusters, self-assembled monolayer (SAM) 18-5—18-6
Vibrational spectroscopy, clusters in matrix isolation, infrared absorption spectroscopy 9-3
Vibrational spectroscopy, clusters in matrix isolation, principle 9-2
Vibrational spectroscopy, clusters in matrix isolation, Raman spectroscopy 9-3
Vibrational spectroscopy, free electron laser (FEL)-based infrared spectroscopy, as IR source 9-8—9-10
Vibrational spectroscopy, free electron laser (FEL)-based infrared spectroscopy, IR laser sources 9-8—9-9
Vibrational spectroscopy, free electron laser (FEL)-based infrared spectroscopy, multiple photon excitation 9-10—9-12
Vibrational spectroscopy, gas-phase clusters, direct absorption measurements 9-3—9-4
Vibrational spectroscopy, gas-phase clusters, electronic transitions 9-4—9-6
Vibrational spectroscopy, gas-phase clusters, He droplets, spectroscopy 9-7—9-8
Vibrational spectroscopy, gas-phase clusters, photodissociation spectroscopy 9-6—9-7
Volmer — Weber (VW), growth model 18-8
Water clusters, electric and magnetic dipole moments 10-7
Water clusters, helium droplets, doped 20-17—20-19
Water clusters, photoelectron spectroscopy 7-19—7-20
Whitney's theorem 28-2
Window-like defects, C-C bond breakage 31-3
Window-like defects, diatomic vacancy 31-4—31-5
Window-like defects, monatomic vacancy 31-3—31-4
Zeeman shift 10-2
Ðåêëàìà