Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Nanophysics: Clusters and Fullerenes

Àâòîð: Sattler K.D.

Àííîòàöèÿ:

The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2011

Êîëè÷åñòâî ñòðàíèö: 912

Äîáàâëåíà â êàòàëîã: 09.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Onion-like inorganic fullerenes, geometric properties, Euler's theorem      51-2
Onion-like inorganic fullerenes, geometric properties, isolated pentagon rule (IPR)      51-4
Onion-like inorganic fullerenes, geometric properties, polyhedra      51-3
Onion-like inorganic fullerenes, geometric properties, vertex configuration      51-3
Onion-like inorganic fullerenes, symmetries and building principles      51-5—51-9
Onion-like inorganic fullerenes, symmetries and building principles, Frank — Kasper cages      51-5—51-7
Onion-like inorganic fullerenes, symmetries and building principles, Keplerate fullerene-like cages      51-7—51-9
Optical properties, carbon onions, electromagnetic shielding      34-14
Optical properties, carbon onions, transmittance and absorption      34-13—34-14
Organic clusters, PES, anion beam hole-burning technique      8-7—8-8
Organic clusters, PES, anion photoelectron spectroscopy, magnetic bottle PE spectrometer      8-7
Organic clusters, PES, anion photoelectron spectroscopy, oligoacene cluster anions      8-8—8-12
Organic clusters, PES, anion photoelectron spectroscopy, principle      8-6—8-7
Organic clusters, PES, mass spectrometry of      8-4—8-6
Organic clusters, PES, molecular clusters      8-1—8-2
Organic clusters, PES, polarization effects      8-2—8-3
Organic clusters, PES, production, large molecular clusters      8-3—8-4
Organic clusters, PES, structure and physical properties      8-2
Organic photovoltaics      36-9—36-12
Oxygen clusters      7-17
Pair-binding energy      29-5—29-6
Particle injection, CCA steady state, higher order correlation functions      16-15
Particle injection, CCA steady state, total average particle density      16-14
Particle-surface interactions, adsorption sites      18-3—18-4
Particle-surface interactions, adsorption, chemisorption      18-3
Particle-surface interactions, adsorption, physisorption      18-2—18-3
Particle-surface interactions, surface coverage effect, covalent/metallic bonding      18-5
Particle-surface interactions, surface coverage effect, electrostatic interactions      18-4—18-5
Particle-surface interactions, surface coverage effect, van der Waals forces      18-5—18-7
Periconjugative effect      36-5—36-6
Phonon coupling      26-8
Photoelectron spectroscopy (PES), alkali and noble metal clusters, experimental setup      6-8—6-9
Photoelectron spectroscopy (PES), alkali and noble metal clusters, principle      6-7—6-8
Photoelectron spectroscopy (PES), covalent and ionic solids, diamondoids and alkali halides      7-26
Photoelectron spectroscopy (PES), covalent and ionic solids, selenium and sulfur clusters      7-25
Photoelectron spectroscopy (PES), doped silicon cages      5-10—5-11
Photoelectron spectroscopy (PES), encapsulated fullerenes      42-2—42-3
Photoelectron spectroscopy (PES), ionizing radiation and matter, core-level excitation      7-5—7-6
Photoelectron spectroscopy (PES), ionizing radiation and matter, core-level ionization, XPS      7-5
Photoelectron spectroscopy (PES), ionizing radiation and matter, valence-level ionization, UPS      7-5
Photoelectron spectroscopy (PES), metallic solids, Auger spectroscopy      7-24
Photoelectron spectroscopy (PES), metallic solids, electron spectroscopy      7-20—7-22
Photoelectron spectroscopy (PES), metallic solids, XAS technique      7-22—7-23
Photoelectron spectroscopy (PES), metallic solids, XPS experiments      7-23—7-25
Photoelectron spectroscopy (PES), molecular gases and liquids, benzene clusters      7-19
Photoelectron spectroscopy (PES), molecular gases and liquids, chloromethane clusters      7-19
Photoelectron spectroscopy (PES), molecular gases and liquids, dimers      7-17
Photoelectron spectroscopy (PES), molecular gases and liquids, methane clusters      7-18—7-19
Photoelectron spectroscopy (PES), molecular gases and liquids, nitrogen and oxygen clusters      7-17
Photoelectron spectroscopy (PES), molecular gases and liquids, ultrafast dissociation      7-18
Photoelectron spectroscopy (PES), molecular gases and liquids, water clusters      7-19—7-20
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, anion beam hole-burning technique      8-7—8-8
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, anion photoelectron spectroscopy      8-6—8-7
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, mass spectrometry of      8-4—8-6
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, molecular clusters      8-1—8-2
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, oligoacene cluster anions      8-8—8-12
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, polarization effects      8-2—8-3
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, production      8-3—8-4
Photoelectron spectroscopy (PES), organic clusters, $\pi$-conjugated organic molecules, structure and physical properties      8-2
Photoelectron spectroscopy (PES), rare gas clusters, heterogeneous cluster composition      7-13—7-15
Photoelectron spectroscopy (PES), rare gas clusters, inner valence studies and interatomic Coulombic decay      7-11—7-12
Photoelectron spectroscopy (PES), rare gas clusters, normal Auger spectroscopy      7-12—7-13
Photoelectron spectroscopy (PES), rare gas clusters, photon energy, XAS and XPS      7-8—7-11
Photoelectron spectroscopy (PES), rare gas clusters, resonant Auger spectroscopy      7-15—7-17
Photoelectron spectroscopy (PES), rare gas clusters, valence-level photoelectron spectroscopy      7-7—7-8
Photoelectron spectroscopy (PES), sources, gaseous      7-6
Photoelectron spectroscopy (PES), sources, liquids      7-6—7-7
Photoelectron spectroscopy (PES), sources, solids      7-7
Photofragmentation, fullerenes      26-7—26-8
Photofragmentation, silicon-doped fullerenes      32-2
Photoionization      35-3—35-4
Physisorption      18-2—18-3
Planar cluster      see also "Surface planar metal clusters"
Planar cluster, size and shape distributions, spatially averaged tunneling spectra      17-11
Planar cluster, size and shape distributions, STM image      17-9—17-10
Planar cluster, substrate effect, adsorption      17-16
Planar cluster, substrate effect, Moire pattern      17-14—17-15
Planar conducting film      35-2
Planar embedding      28-2
Plasma synthesis, fullerenes, arc discharge method      21-5
Plasma synthesis, fullerenes, arc-jet plasma method      21-5—21-7
Plasma synthesis, fullerenes, characterization of, in situ diagnostics      21-11—21-13
Plasma synthesis, fullerenes, characterization of, numerical modeling      21-8—21-11
Plasma synthesis, fullerenes, definition      21-2—21-4
Plasma synthesis, fullerenes, fullerene discovery history      21-2
Plasma synthesis, fullerenes, laser ablation method      21-4
Plasma synthesis, fullerenes, nonequilibrium plasma method      21-7—21-8
Plasma synthesis, fullerenes, optimization of      21-13—21-17
Plasmons, $C_{60^{q+}}$ molecular ions photoionization      35-4—35-6
Plasmons, $C_{60}$ and $C_{70}$ molecules photoionization      35-2—35-4
Plasmons, endohedral fullerene molecules      35-9—35-10
Plasmons, excitation theoretical models, classical Mie scattering      35-7
Plasmons, excitation theoretical models, liquid-drop model      35-8—35-9
Plasmons, excitation theoretical models, quantum-mechanical approximations      35-7—35-8
Plasmons, giant resonances similarities      35-6—35-7
Plasmons, oscillations models      35-1—35-2
Plasmons, planar conducting film      35-2
Plasmons, spherical conducting shell      35-2
Plasmons, structure of      35-3 35-10
Point symmetry groups      28-2—28-4
Polycyclic aromatic hydrocarbons (PAHs)      see "Organic clusters PES"
Polyhydroxylated fullerenes, $La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, eigenvalue spectra comparision      45-12 45-13
Polyhydroxylated fullerenes, $La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, lowest-energy atomic configurations      45-11 45-12 45-14
Polyhydroxylated fullerenes, $La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, Perdew — Wang (PW91) gradient-corrected functional      45-11
Polyhydroxylated fullerenes, $La@C_{60}(OH)^{+q_{32}}$, electronic behavior and stability, spin-down distributions      45-12 45-13
Polyhydroxylated fullerenes, density-functional theory (DFT) methodologies      45-3 45-14—45-15
Polyhydroxylated fullerenes, low hydroxylated $C_{60}$ fullerenes, adsorption energies      45-6
Polyhydroxylated fullerenes, low hydroxylated $C_{60}$ fullerenes, MNDO, energy atomic configurations      45-4 45-5
Polyhydroxylated fullerenes, low hydroxylated $C_{60}$ fullerenes, vibrational frequencies      45-3—45-6
Polyhydroxylated fullerenes, optical properties, $C_{60}$, absorption spectra calculation      45-9 45-10
Polyhydroxylated fullerenes, optical properties, $C_{60}$, monotonic decay      45-9
Polyhydroxylated fullerenes, optical properties, $C_{60}$, optical absorption measurements      45-7
Polyhydroxylated fullerenes, optical properties, $C_{60}$, optical gap vs. HOMO-LUMO energy separation      45-8 45-9
Polyhydroxylated fullerenes, optical properties, $C_{60}$, optimized PM3 atomic configurations      45-8
Polyhydroxylated fullerenes, optical properties, $C_{60}$, ZINDO methodology      45-8
Polyhydroxylated fullerenes, solubility      45-1—45-2
Polyhydroxylated fullerenes, state of the art      45-2—45-3
Porphyrin dimers      41-7—41-11
Precipitation, nucleation and growth      1-2
Pristine fullerenes, crystalline materials      38-3
Pristine fullerenes, electrochemical replacement method      38-2—38-3
Pristine fullerenes, solubility      40-2—40-3
Pristine fullerenes, supramolecular composites      38-3 38-4
Projectile orientation effect      26-5
Pyrrolidinium salts      36-6
Quantum melting (QM)      see also "Hydrogen clusters"
Quantum melting (QM), chemical potential      11-12
Quantum melting (QM), doped clusters and exchange cycles      11-14
Quantum melting (QM), exchange cycle frequency      11-13—11-14
Quantum melting (QM), radial density profile, temperature      11-13
Quantum melting (QM), superfluid fraction      11-12—11-13
Raman spectroscopy, $C_{60}$, bundling effect      46-25
Raman spectroscopy, $C_{60}$, diameter dependence      46-22—46-23
Raman spectroscopy, $C_{60}$, filling factor      46-24—46-25
Raman spectroscopy, $C_{60}$, laser desorption technique      46-20—46-22
Raman spectroscopy, $C_{60}$, polymerization effect      46-26—46-27
Raman spectroscopy, $C_{60}$, Raman active modes      46-21—46-22
Raman spectroscopy, $C_{60}$, Raman active modes, carbon nanotubes      46-19—46-20
Raman spectroscopy, $C_{60}$, Raman active modes, monomer and polymer      46-18—46-19
Raman spectroscopy, $C_{60}$, Raman scattering, bond polarizability model      46-16—46-17
Raman spectroscopy, $C_{60}$, Raman scattering, polarizability theory      46-15—46-16
Raman spectroscopy, $C_{60}$, Raman scattering, spectral moment's method      46-17
Rice — Ramsperger — Kassel — Marcus (RRKM) theory, fullerene fragmentation      26-6
Rotational symmetry axes      28-3—28-4
Semiconductor and insulator surfaces, fullerenes      39-11—39-12
Silicon clusters, doped silicon cages, infrared spectroscopy      5-11—5-13
Silicon clusters, doped silicon cages, mass spectrometry      5-4—5-6
Silicon clusters, doped silicon cages, photoelectron spectroscopy      5-10—5-11
Silicon clusters, doped silicon cages, quantum chemical calculations      5-7—5-10
Silicon clusters, doped silicon cages, reactivity and chemical-probe studies      5-6—5-7
Silicon clusters, hybridization preferences      5-1
Silicon clusters, stabilization, combined effects      5-3—5-4
Silicon clusters, stabilization, electronic stabilization      5-2—5-3
Silicon clusters, stabilization, geometric stabilization      5-2
Silicon fullerenes vs. carbon fullerenes, buckminsterfullerene structure      48-3
Silicon fullerenes vs. carbon fullerenes, other buckyballs and fullerenes      48-3—48-4
Silicon fullerenes vs. carbon fullerenes, similarities and differences      48-1
Silicon fullerenes, bond formation      48-2
Silicon fullerenes, combined benfits      48-4
Silicon fullerenes, direct method, calculations      48-4
Silicon fullerenes, direct method, distorted $C_{2h}$ structure      48-5
Silicon fullerenes, direct method, magic clusters      48-6
Silicon fullerenes, hybridization      48-2
Silicon fullerenes, indirect method, endohedral doping      48-7—48-8
Silicon fullerenes, indirect method, exohedral doping      48-8—48-12
Silicon fullerenes, intermediate approach      48-6—48-7
Silicon fullerenes, orbital, combination      48-1—48-2
Smoluchowski equation, scaling hypothesis, varied kernel      16-5—16-6
Smoluchowski equation, solutions, constant kernel      16-6—16-7
Sodium clusters, angle-resolved PES      6-16—6-17
Sodium clusters, large      6-13—6-14
Sodium clusters, small      6-9—6-13
SPARC      see "Surface-plasmon-assisted rescattering in clusters"
Spinodal curve, nucleation      1-2—1-3
Stability, fullerenes, $C_{50}$, negatively charged      25-15—25-16
Stability, fullerenes, $C_{58}$ and $C_{68}$ fullerenes, positively charged      25-12
Stability, fullerenes, $C_{60}$ and $C_{70}$ fullerenes, negatively charged      25-15—25-16
Stability, fullerenes, $C_{60}$ fullerenes, positively charged, asymmetric fission model      25-7—25-8
Stability, fullerenes, $C_{60}$ fullerenes, positively charged, electronic states and ionization potentials      25-6—25-7
Stability, fullerenes, $C_{60}$ fullerenes, positively charged, fragmentation      25-7
Stability, fullerenes, $C_{60}$ fullerenes, positively charged, kinetic stability      25-9—25-10
Stability, fullerenes, $C_{60}$ fullerenes, positively charged, thermodynamic stability      25-8
Stability, fullerenes, $C_{70}$ fullerenes, positively charged, dissociation energies      25-11
Stability, fullerenes, $C_{70}$ fullerenes, positively charged, fission barriers and coulomb limit      25-11—25-12
Stability, fullerenes, $C_{70}$ fullerenes, positively charged, ionization potentials      25-10
Stability, fullerenes, negatively charged fullerenes      25-16—25-18
Stability, fullerenes, pentagon adjacency penalty rule (PAPR)      25-5—25-6
Stability, fullerenes, pentagon rule isolation      25-5
Stability, fullerenes, singly and doubly charged, $C_{n}$, dissociation energies      25-14—25-15
Stability, fullerenes, singly and doubly charged, $C_{n}$, ionization potentials      25-12
Stability, fullerenes, singly and doubly charged, $C_{n}$, stable isomers      25-12
Stability, fullerenes, spherical aromaticity      25-6
Stark shift      27-13
Steinitz' Theorem      28-2
Stochastic Smoluchowski equation, Doi and Zeldovich — Ovchinnikov (DZO) transformation      16-3
Stochastic Smoluchowski equation, imaginary multiplicative noise      16-4
Stone — Wales (SW) transformation, charged fullerenes stability      25-3
Stone — Wales (SW) transformation, definition      31-2—31-3
Stone — Wales (SW) transformation, mechanism      31-2
Stranski — Krastanov (SK) growth      18-9
Structure and topology, fullerenes, definition and nomenclature      25-2—25-3
Structure and topology, fullerenes, nonclassical fullerenes      25-4
Structure and topology, fullerenes, Schlegel diagram      25-4
Structure and topology, fullerenes, sphericity      25-3—25-4
Structure and topology, fullerenes, Stone — Wales (SW) transformation      25-3
Superconductivity      29-7—29-8
Superfluidity, deuterium      2-17
Superfluidity, helium clusters, anisotropic distributions      12-10
Superfluidity, helium clusters, effective rotational constant      12-11—12-13
Superfluidity, helium clusters, excitation spectrum      12-1—12-2
Superfluidity, helium clusters, excited-state energy calculation      12-8
Superfluidity, helium clusters, infrared spectra measurement      12-5—12-6
Superfluidity, helium clusters, isotopes      12-1
Superfluidity, helium clusters, magic numbers      12-8
Superfluidity, helium clusters, moment of inertia      12-7
Superfluidity, helium clusters, Monte Carlo calculations      12-2—12-3
Superfluidity, helium clusters, nanodroplet temperatures      12-2
Superfluidity, helium clusters, nonclassical inertia      12-1
Superfluidity, helium clusters, path-integral simulations      12-11
Superfluidity, helium clusters, pulsed supersonic jet expansions      12-6—12-7
Superfluidity, helium clusters, quantum simulations      12-9
Superfluidity, helium clusters, rotational excitation caculation      12-11
Superfluidity, helium clusters, rotational motion examination      12-4—12-5
Superfluidity, helium clusters, spectroscopic measurement      12-3—12-4
Superfluidity, helium clusters, superfluid helium-4 nanodroplets      12-6
Superfluidity, helium clusters, time-independent Schroedinger equation      12-8
Superfluidity, hydrogen clusters, superfluid fraction      11-9—11-10
Superfluidity, hydrogen clusters, transition temperature      11-5—11-6
Superfluidity, quantum melting      2-17
Superfluidity, superfluid fraction      2-16
Supergraphite      30-8—30-9
Supramolecular assemblies of fullerenes, $C_{60}$ derivatives, morphology control      38-5—38-8
Supramolecular assemblies of fullerenes, $C_{60}$ derivatives, superhydrophobic surfaces      38-8—38-9
Supramolecular assemblies of fullerenes, developments      38-10
Supramolecular assemblies of fullerenes, fluid fullerenes      38-9—38-10
Supramolecular assemblies of fullerenes, liquid crystalline assemblies      38-9
Supramolecular assemblies of fullerenes, nanocarbon clusters      38-2
Supramolecular assemblies of fullerenes, pristine $C_{60}$ assemblies, crystalline materials      38-3
Supramolecular assemblies of fullerenes, pristine $C_{60}$ assemblies, electrochemical replacement method      38-2—38-3
Supramolecular assemblies of fullerenes, pristine $C_{60}$ assemblies, supramolecular composites      38-3 38-4
Supramolecular assemblies of fullerenes, solid surfaces assemblies      38-3—38-5
Surface diffusion, energetics, nanopuck formation      17-7—17-8
Surface diffusion, energetics, Pb quantum island deposition      17-8—17-9
Surface diffusion, kinetics      18-9
Surface energy      18-7
Surface erosion, cluster impact, AFM image      19-11
Surface erosion, cluster impact, angular distribution      19-11
Surface erosion, cluster impact, atomic force microscopy image      19-13
Surface erosion, cluster impact, craters      19-10
Surface impact, fullerene fragmentation, MD      26-3
Surface impact, fullerene fragmentation, Tersoff empirical potential      26-4
Surface impact, fullerene fragmentation, trajectory      26-4—26-5
Surface planar metal clusters, experimental procedures and conditions      17-2
Surface planar metal clusters, magic nature, electronic closed shell-geometric transition      17-13—17-14
Surface planar metal clusters, magic nature, first-principles calculations      17-11—17-13
Surface planar metal clusters, magic nature, size and shape distributions      17-9—17-11
Surface planar metal clusters, magic nature, substrate effect      17-14—17-16
Surface planar metal clusters, Pb clusters, Si(111)7 $\times$ 7 surface, 3D cluster and 2D island surface      17-4
Surface planar metal clusters, Pb clusters, Si(111)7 $\times$ 7 surface, 3D cluster growth      17-4
Surface planar metal clusters, Pb clusters, Si(111)7 $\times$ 7 surface, 3D-2D growth transition      17-5
Surface planar metal clusters, Pb clusters, Si(111)7 $\times$ 7 surface, cluster-island transition      17-5
Surface planar metal clusters, Pb clusters, Si(111)7 $\times$ 7 surface, epitaxial growth modes      17-2—17-3
Surface planar metal clusters, Pb clusters, Si(111)7 $\times$ 7 surface, Fermi discs      17-4
Surface planar metal clusters, self-organized growth, substrate characteristics      17-6—17-7
Surface planar metal clusters, self-organized growth, surface diffusion energetics      17-7—17-9
Surface-plasmon-assisted rescattering in clusters (SPARC)      13-18
SW transformation      see "Stone-Wales (SW) transformation"
TBMD      see "Tight-binding molecular-dynamics (TBMD) simulations"
Thermal treatment, carbonaceous materials, nanodiamond annealing, graphite fragments formation      24-8
Thermal treatment, carbonaceous materials, nanodiamond annealing, graphite/carbon black      24-9
Thermal treatment, carbonaceous materials, nanodiamond annealing, HRTEM image of      24-8
Thermal treatment, carbonaceous materials, nanodiamond annealing, of carbon nanotubes      24-9
Thermal treatment, carbonaceous materials, nanodiamond annealing, of carbon soot      24-9
Thermal treatment, carbonaceous materials, nanodiamond annealing, XRD patterns      24-7
Tight-Binding Method      26-2—26-3
Tight-binding molecular-dynamics (TBMD) simulations      29-3
Trajectory surface hopping (TSH) method      15-5—15-6
Tribological properties, carbon onions      34-14—34-15
van der Waals clusters, commensurate overlayer      18-7
van der Waals clusters, rare-gas clusters      37-7 37-8
van der Waals clusters, self-assembled monolayer (SAM)      18-5—18-6
Vibrational spectroscopy, clusters in matrix isolation, infrared absorption spectroscopy      9-3
Vibrational spectroscopy, clusters in matrix isolation, principle      9-2
Vibrational spectroscopy, clusters in matrix isolation, Raman spectroscopy      9-3
Vibrational spectroscopy, free electron laser (FEL)-based infrared spectroscopy, as IR source      9-8—9-10
Vibrational spectroscopy, free electron laser (FEL)-based infrared spectroscopy, IR laser sources      9-8—9-9
Vibrational spectroscopy, free electron laser (FEL)-based infrared spectroscopy, multiple photon excitation      9-10—9-12
Vibrational spectroscopy, gas-phase clusters, direct absorption measurements      9-3—9-4
Vibrational spectroscopy, gas-phase clusters, electronic transitions      9-4—9-6
Vibrational spectroscopy, gas-phase clusters, He droplets, spectroscopy      9-7—9-8
Vibrational spectroscopy, gas-phase clusters, photodissociation spectroscopy      9-6—9-7
Volmer — Weber (VW), growth model      18-8
Water clusters, electric and magnetic dipole moments      10-7
Water clusters, helium droplets, doped      20-17—20-19
Water clusters, photoelectron spectroscopy      7-19—7-20
Whitney's theorem      28-2
Window-like defects, C-C bond breakage      31-3
Window-like defects, diatomic vacancy      31-4—31-5
Window-like defects, monatomic vacancy      31-3—31-4
Zeeman shift      10-2
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå