Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes
Sattler K.D. — Handbook of Nanophysics: Clusters and Fullerenes



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Nanophysics: Clusters and Fullerenes

Àâòîð: Sattler K.D.

Àííîòàöèÿ:

The field of nanoscience was pioneered in the 1980s with the groundbreaking research on clusters, which later led to the discovery of fullerenes. Handbook of Nanophysics: Clusters and Fullerenes focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers free clusters, including hydrogen, bimetallic, silicon, metal, and atomic clusters, as well as the cluster interactions. The expert contributors examine how carbon fullerenes are produced and how to characterize their stability. They discuss the structure, properties, and behavior of carbon fullerenes, including the smallest possible fullerene: C20. The book also looks at inorganic fullerenes, such as boron fullerenes, silicon fullerenes, nanocones, and onion-like inorganic fullerenes. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2011

Êîëè÷åñòâî ñòðàíèö: 912

Äîáàâëåíà â êàòàëîã: 09.07.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Carbon fullerenes, structure and properties, carbon onions      34-1—34-15
Carbon fullerenes, structure and properties, electron acceptors      36-1—36-12
Carbon fullerenes, structure and properties, molecular orbital treatment      33-1—33-18
Carbon fullerenes, structure and properties, plasmons      35-1—35-10
Carbon fullerenes, structure and topology      25-2—25-4
Carbon fullerenes, supported fullerenes, fundamental processes      39-1—39-2
Carbon fullerenes, supported fullerenes, metal surfaces      39-3—39-11
Carbon fullerenes, supported fullerenes, semiconductor and insulator surfaces      39-11—39-12
Carbon fullerenes, supported fullerenes, supporting medias      39-12
Carbon fullerenes, supramolecular assemblies, $C_{60}$ derivatives      38-5—38-9
Carbon fullerenes, supramolecular assemblies, $C_{60}$ nanowhiskers      38-3
Carbon fullerenes, supramolecular assemblies, developments      38-10
Carbon fullerenes, supramolecular assemblies, fluid fullerenes      38-9—38-10
Carbon fullerenes, supramolecular assemblies, liquid crystalline assemblies      38-9
Carbon fullerenes, supramolecular assemblies, nanocarbon clusters      38-2
Carbon fullerenes, supramolecular assemblies, pristine $C_{60}$ assemblies      38-2—38-3
Carbon fullerenes, supramolecular assemblies, solid surfaces assemblies      38-3—38-5
Carbon fullerenes, suspensions, applications of      40-7
Carbon fullerenes, suspensions, endohedral fullerenes      40-6—40-7
Carbon fullerenes, suspensions, in water      40-3—40-6
Carbon fullerenes, suspensions, pristine fullerenes solubility      40-2—40-3
Carbon fullerenes, suspensions, solubility of      40-7—40-8
Carbon fullerenes, suspensions, structures of      40-1—40-2
Carbon fullerenes, suspensions, toxicity, health, and environmental issues      40-6
Carbon fullerenes, symmetry of fulleroids, (5,7) type      28-10—28-12
Carbon fullerenes, symmetry of fulleroids, convex polyhedra and planar graphs      28-1—28-2
Carbon fullerenes, symmetry of fulleroids, icosahedral fulleroids      28-6—28-8
Carbon fullerenes, symmetry of fulleroids, local restrictions      28-4—28-6
Carbon fullerenes, symmetry of fulleroids, multi-pentagonal faces      28-8—28-10
Carbon fullerenes, symmetry of fulleroids, octahedral, prismatic, or pyramidal      28-10
Carbon fullerenes, symmetry of fulleroids, point symmetry groups      28-2
Carbon fullerenes, symmetry of fulleroids, polyhedral symmetries and graph automorphisms      28-2—28-3
Carbon fullerenes, symmetry of fulleroids, subgroups      28-8
Carbon fullerenes, symmetry of fulleroids, twofold rotational axis      28-6
Carbon nanotube (CNT), $C_{60}$, encapsulation, organic solvents      41-9 41-14
Carbon nanotube (CNT), $C_{60}$, Raman spectroscopy      46-19—46-20
Carbon nanotube (CNT), $C_{60}$, structure and dynamics      46-3—46-4
Carbon nanotube (CNT), $C_{60}$, vibrational properties, phonons      46-12—46-13
Carbon nanotube (CNT), single-walled type, $C_{92}$      31-6
Carbon nanotube (CNT), single-walled type, $Gd@C_{82}$      31-5
Carbon nanotube (CNT), single-walled type, SW defect      31-3
Carbon onions, chemical vapor deposition (CVD)      34-9
Carbon onions, chemical vapor deposition, $CO_{2}$, catalytic reduction      24-12
Carbon onions, chemical vapor deposition, catalytic disproportionation, CO      24-10—24-12
Carbon onions, chemical vapor deposition, hollow carbon onion particles production      24-17—24-19
Carbon onions, chemical vapor deposition, low-temperature synthesis      24-13—24-15
Carbon onions, chemical vapor deposition, nitrogen incorporation, growth of      24-15—24-17
Carbon onions, chemical vapor deposition, plasma enhanced      24-10
Carbon onions, chemical vapor deposition, thermal      24-13
Carbon onions, chemical vapor deposition, vapor phase growth      24-12—24-13
Carbon onions, closed cage carbon structures, fullerene molecules      34-3 34-4
Carbon onions, closed cage carbon structures, high-resolution transmission electron microscopy (HRTEM) images      34-3 34-4
Carbon onions, closed cage carbon structures, icosahedral structure      34-4
Carbon onions, closed cage carbon structures, polyhedral OLC particles      34-5
Carbon onions, high-energy condition, preparation, arc discharge method      24-2—24-4
Carbon onions, high-energy condition, preparation, carbon ions implantation, metal particles      24-5—24-6
Carbon onions, high-energy condition, preparation, high-energy irradiation      24-4—24-5
Carbon onions, high-energy condition, preparation, thermal treatment      24-6—24-9
Carbon onions, hybridization, $sp_{2}$ and $sp_{3}$ hybridization      34-2—34-3
Carbon onions, hybridization, orbital mixing      34-2
Carbon onions, hybridization, overlap of sp hybrid orbitals      34-2
Carbon onions, properties and applications, electrical resistivity      34-11
Carbon onions, properties and applications, electronic properties      34-10—34-11
Carbon onions, properties and applications, field emission      34-11—34-13
Carbon onions, properties and applications, optical properties      34-13—34-14
Carbon onions, properties and applications, tribological properties      34-14—34-15
Carbon onions, synthesis, alternative material      34-6—34-8
Carbon onions, synthesis, developments      34-8—34-10
Carbon onions, synthesis, electron beam irradiation      34-5—34-6
Carbon onions, TEM images of      24-2
Carbon onions, ultra-dispersed diamond (UDD)      34-10 34-11
Cavity ring-down spectroscopy (CRDS), gas-phase clusters      9-4
Charge migration      13-11—13-12
Charged fullerenes stability, $C_{50}$, negatively charged      25-15—25-16
Charged fullerenes stability, $C_{58}$ and $C_{68}$ fullerenes      25-12
Charged fullerenes stability, $C_{60}$ and $C_{70}$ fullerenes, negatively charged      25-15—25-16
Charged fullerenes stability, $C_{60}$ and $C_{70}$ fullerenes, positively charged      25-5—25-12
Charged fullerenes stability, bonding features, $\pi$ bond, electron derealization and spherical aromaticity      25-5
Charged fullerenes stability, bonding features, $\sigma$ bonds, strain      25-5
Charged fullerenes stability, bonding features, chemical bonds      25-4—25-5
Charged fullerenes stability, kinetic energy release      25-2
Charged fullerenes stability, nano-peapods      25-2
Charged fullerenes stability, negatively charged fullerenes      25-16—25-18
Charged fullerenes stability, rules of stability      25-5—25-6
Charged fullerenes stability, singly and doubly charged, $C_{n}$      25-12—25-15
Charged fullerenes stability, structure and topology, definition and nomenclature      25-2—25-3
Charged fullerenes stability, structure and topology, nonclassical fullerenes      25-4
Charged fullerenes stability, structure and topology, Schlegel diagram      25-4
Charged fullerenes stability, structure and topology, sphericity      25-3—25-4
Charged fullerenes stability, structure and topology, Stone — Wales transformation      25-3
Chemical vapor deposition (CVD), $CO_{2}$, catalytic reduction      24-12
Chemical vapor deposition (CVD), carbon onion growth, nitrogen incorporation      24-15—24-17
Chemical vapor deposition (CVD), catalytic disproportionation, CO      24-10—24-12
Chemical vapor deposition (CVD), hollow carbon onion particles production      24-17—24-19
Chemical vapor deposition (CVD), low-temperature synthesis      24-13—24-15
Chemical vapor deposition (CVD), plasma enhanced      24-10
Chemical vapor deposition (CVD), thermal      24-13
Chemical vapor deposition (CVD), vapor phase growth      24-12—24-13
Chemisorption      18-3
Chloromethane clusters      7-19
Closed cage carbon structures, fullerene molecules      34-3 34-4
Closed cage carbon structures, high-resolution transmission electron microscopy (HRTEM) images      34-3 34-4
Closed cage carbon structures, icosahedral structure      34-3 34-4
Closed cage carbon structures, polyhedral OLC particles      34-5
Cluster beam formation, fundamentals aspects      19-2—19-3
Cluster beam formation, mass selection of      19-3—19-4
Cluster beam formation, sources, gas aggregation      19-3
Cluster beam formation, sources, spray sources      19-4
Cluster beam formation, sources, supersonic jet sources      19-3
Cluster beam formation, sources, surface erosion      19-3—19-4
Cluster calorimetry, mass spectra, clusters vs. internal energy      15-7
Cluster calorimetry, mass spectra, schematic representation      15-7
Cluster deposition      19-5—19-7
Cluster-cluster aggregation (CCA) kinetics, decay and source problems      16-8
Cluster-cluster aggregation (CCA) kinetics, definition      16-1
Cluster-cluster aggregation (CCA) kinetics, gelation transition, finite time gelation      16-9
Cluster-cluster aggregation (CCA) kinetics, gelation transition, gelation kinetics regularization      16-10—16-12
Cluster-cluster aggregation (CCA) kinetics, gelation transition, instantaneous gelation      16-10
Cluster-cluster aggregation (CCA) kinetics, modeling, lattice model      16-3
Cluster-cluster aggregation (CCA) kinetics, modeling, mean-field theory      16-5 see
Cluster-cluster aggregation (CCA) kinetics, modeling, Monte Carlo simulation      16-4
Cluster-cluster aggregation (CCA) kinetics, modeling, stochastic Smoluchowski equation      16-3—16-4 see
Cluster-cluster aggregation (CCA) kinetics, Smoluchowski equation, exact solution      16-6—16-7
Cluster-cluster aggregation (CCA) kinetics, Smoluchowski equation, scaling hypothesis      16-5—16-6
Cluster-cluster aggregation (CCA) kinetics, stationary state      16-8—16-9
Cluster-cluster aggregation (CCA) kinetics, strong fluctuations, multiscaling, decaying CCA      16-12—16-14
Cluster-cluster aggregation (CCA) kinetics, strong fluctuations, multiscaling, mass distribution      16-15—16-17
Cluster-cluster aggregation (CCA) kinetics, strong fluctuations, multiscaling, steady state, particle injection      16-14—16-15
Cluster-substrate interaction, electronic structure, change transfer      18-13—18-14
Cluster-substrate interaction, electronic structure, chemical reactivity      18-14—18-15
Cluster-substrate interaction, electronic structure, work function      18-11—18-13
Cluster-substrate interaction, kinetic aspects, cluster size effects      18-10—18-11
Cluster-substrate interaction, kinetic aspects, nucleation      18-10
Cluster-substrate interaction, kinetic aspects, sintering      18-10
Cluster-substrate interaction, kinetic aspects, surface diffusion      18-9
Cluster-substrate interaction, kinetic aspects, temperature effect      18-11
Cluster-substrate interaction, particle-surface interactions, adsorption sites      18-3—18-4
Cluster-substrate interaction, particle-surface interactions, physisorption and chemisorption, adsorption      18-2—18-3
Cluster-substrate interaction, particle-surface interactions, surface coverage effect      18-4—18-7
Cluster-substrate interaction, thermodynamic aspects, growth modes      18-8—18-9
Cluster-substrate interaction, thermodynamic aspects, reactivity      18-7
Cluster-substrate interaction, thermodynamic aspects, wetting      18-7—18-8
Cluster-surface collisions      see also "Cluster-substrate interaction"
Cluster-surface collisions, cluster beams formation, fundamental aspects      19-2—19-3
Cluster-surface collisions, cluster beams formation, mass selection of      19-3—19-4
Cluster-surface collisions, cluster beams formation, sources      19-3—19-4
Cluster-surface collisions, history of      19-2
Cluster-surface collisions, interaction, deposition      19-5—19-7
Cluster-surface collisions, interaction, implantation      19-8—19-10
Cluster-surface collisions, interaction, pinning      19-7—19-8
Cluster-surface collisions, interaction, surface erosion      19-10—19-13
CNT      see "Carbon nanotube"
Coarsening process      1-5
Computational methodology, Car — Parrinello scheme      32-3—32-4
Computational methodology, density functional theory      32-3
Computational methodology, ELF and localized orbitals method      32-4
Computational methodology, Nose — Hoover thermostats      32-5
Computational methodology, population analysis      32-4—32-5
Computational methodology, technical details      32-5—32-6
Coulomb explosion, fragmentation, fullerenes      26-7
Coulomb explosion, intense laser field, atomic clusters, pulse-profile and size-distribution effects      13-9—13-11
Coulomb explosion, intense laser field, atomic clusters, single-cluster explosion      13-8—13-9
Coulomb fragmentation, fissility parameter      15-12
Coulomb fragmentation, large fissilities and explosion regime      15-14
Coulomb fragmentation, low fissilities and fission channels      15-12—15-14
Cyclodextrins      41-2—41-3
Decahedral sphere packing, clusters      37-14
Density functional theory (DFT), alkali and noble metal clusters      6-6—6-7
Density functional theory (DFT), polyhydroxylated fullerenes      45-3 45-14—45-15
Density functional theory (DFT), silicon-doped fullerenes      32-3
Density functional theory (DFT), solid state structure of      30-1—30-2
Density-functional-based tight-binding (DFTB) method, $C_{20}$      30-3
Density-functional-based tight-binding (DFTB) method, $C_{28}$      30-4—30-6
Density-functional-based tight-binding (DFTB) method, $C_{36}$      30-7—30-9
Derjaguin — Landau — Verwey — Overbeek (DLVO) theory      44-9
Deuterium, superfluidity      2-17
DFT      see "Density functional theory"
DFTB method      see "Density-functional-based tight-binding (DFTB) method"
Diamondoids      7-26
Dimers and clusters of fullerenes      27-20—27-25
Dimers and clusters of fullerenes, cage-cage distances      27-21
Dimers and clusters of fullerenes, DFT and model results for      27-24
Dimers and clusters of fullerenes, ionization energies, comparison of      27-25
Dimers and clusters of fullerenes, time-of-flight mass spectrum for      27-22
Dimers and clusters of fullerenes, van der Waals clusters of      27-22
Doped silicon cages, infrared spectroscopy      5-11—5-13
Doped silicon cages, mass spectrometry, anionic clusters      5-4—5-5
Doped silicon cages, mass spectrometry, cationic clusters      5-4
Doped silicon cages, mass spectrometry, neutral clusters      5-5—5-6
Doped silicon cages, photoelectron spectroscopy, Cr-doped silicon cluster      5-11
Doped silicon cages, photoelectron spectroscopy, HOMO-LUMO gaps      5-10
Doped silicon cages, photoelectron spectroscopy, terbium-silicon clusters      5-10
Doped silicon cages, quantum chemical calculations, advantages      5-9—5-10
Doped silicon cages, quantum chemical calculations, group-6-doped cluster      5-8—5-9
Doped silicon cages, quantum chemical calculations, shrinkage      5-8
Doped silicon cages, quantum chemical calculations, size, exo-to endohedrall transition      5-9
Doped silicon cages, quantum chemical calculations, Zr-doped silicon clusters      5-8
Doped silicon cages, reactivity and chemical-probe studies      5-6—5-7
Doped silicon cages, reactivity and chemical-probe studies, argon (Ar) probe      5-8
Doped silicon cages, reactivity and chemical-probe studies, mixed plasma      5-7—5-8
Doped silicon cages, reactivity and chemical-probe studies, silane and terbium      5-7
Doubly magic clusters (DMC)      4-9—4-10
Dynamical nucleation theory (DNT)      15-18—15-19
Electric and magnetic dipole moments, free clusters, alkali halide clusters      10-7—10-8
Electric and magnetic dipole moments, free clusters, beam broadening      10-4—10-6
Electric and magnetic dipole moments, free clusters, beam deflection      10-3—10-4
Electric and magnetic dipole moments, free clusters, definitions      10-1—10-2
Electric and magnetic dipole moments, free clusters, ferromagnetism      10-9—10-11
Electric and magnetic dipole moments, free clusters, forces and deflections, external field      10-2—10-3
Electric and magnetic dipole moments, free clusters, helium nanodroplets      10-9
Electric and magnetic dipole moments, free clusters, metal cluster ferroelectricity      10-8—10-9
Electric and magnetic dipole moments, free clusters, metal-fullerene clusters      10-6—10-7
Electric and magnetic dipole moments, free clusters, water clusters      10-7
electron field Carbon onions, emission characteristics      34-13
Electron localization function (ELF), bonding features      32-9—32-10
Electron localization function (ELF), computational methodology      32-4
Electron-phonon coupling      29-6
Electronegative atoms      36-3—36-5
Electronic closed shell-geometric transition, electronic density of states (DOS)      17-13—17-14
Electronic closed shell-geometric transition, electronic ground-state properties      17-13
Electronic structure, alkali and noble metal clusters, atomic structure influence      6-6
Electronic structure, alkali and noble metal clusters, deformation, ellipsoidal      6-6
Electronic structure, alkali and noble metal clusters, deformation, energy levels, spheroidal      6-4—6-5
Electronic structure, alkali and noble metal clusters, deformation, Jahn — Teller effect      6-5
Electronic structure, alkali and noble metal clusters, density functional theory (DFT) calculation, Hohenberg — Kohn theorem      6-6
Electronic structure, alkali and noble metal clusters, density functional theory (DFT) calculation, Kohn — Sham equation      6-7
Electronic structure, alkali and noble metal clusters, effective single-particle potential derivation, Hamiltonian      6-3
Electronic structure, alkali and noble metal clusters, effective single-particle potential derivation, harmonic potential      6-3—6-4
Electronic structure, alkali and noble metal clusters, effective single-particle potential derivation, Wood — Saxon potential      6-4
Electronic structure, alkali and noble metal clusters, noble metal clusters, photoelectron spectra patterns      6-14—6-16
Electronic structure, alkali and noble metal clusters, noble metal clusters, s-band intersection      6-14
Electronic structure, alkali and noble metal clusters, photoelectron spectroscopy (PES) measurement, experimental setup      6-8—6-9
Electronic structure, alkali and noble metal clusters, photoelectron spectroscopy (PES) measurement, principle      6-7—6-8
Electronic structure, alkali and noble metal clusters, quantum size effect      6-1
Electronic structure, alkali and noble metal clusters, size-dependence      6-1
Electronic structure, alkali and noble metal clusters, sodium clusters, angle-resolved PES      6-16—6-17
Electronic structure, alkali and noble metal clusters, sodium clusters, large      6-13—6-14
Electronic structure, alkali and noble metal clusters, sodium clusters, small      6-9—6-13
Electrophoretic mobility, fullerol clusters      44-8 44-9
elf      see "Electron localization function"
Encapsulation, $C_{60}$ fullerenes, aqueous solution, cyclodextrins      41-2—41-3
Encapsulation, $C_{60}$ fullerenes, aqueous solution, liposomes      41-4—41-5
Encapsulation, $C_{60}$ fullerenes, aqueous solution, water-soluble calixarenes and cyclotriveratrylene      41-3
Encapsulation, $C_{60}$ fullerenes, aqueous solution, water-soluble polymers      41-4
Encapsulation, $C_{60}$ fullerenes, electronic structure, endohedral fullerenes pospects      42-11
Encapsulation, $C_{60}$ fullerenes, electronic structure, historic perspectives      42-1
Encapsulation, $C_{60}$ fullerenes, electronic structure, mass production method      42-2
Encapsulation, $C_{60}$ fullerenes, electronic structure, metallofullerenes      42-1—42-2
Encapsulation, $C_{60}$ fullerenes, electronic structure, mono metal atom-entrapped fullerenes      42-3—42-9
Encapsulation, $C_{60}$ fullerenes, electronic structure, multiple atoms-entrapped fullerenes      42-9—42-11
Encapsulation, $C_{60}$ fullerenes, electronic structure, photoelectron spectroscopy      42-2—42-3
Encapsulation, $C_{60}$ fullerenes, isolated pentagon rule (IPR)      42-3
Encapsulation, $C_{60}$ fullerenes, organic solvents, calixarenes      41-5—41-6
Encapsulation, $C_{60}$ fullerenes, organic solvents, capsules      41-9 41-12 41-13
Encapsulation, $C_{60}$ fullerenes, organic solvents, carbon nanotubes (peapods)      41-9 41-14
Encapsulation, $C_{60}$ fullerenes, organic solvents, cyclotriveratrylenes and cavitands      41-6
Encapsulation, $C_{60}$ fullerenes, organic solvents, macrocyclic compounds      41-6—41-7
Encapsulation, $C_{60}$ fullerenes, organic solvents, porphyrin dimers      41-7—41-11
Encapsulation, $C_{60}$ fullerenes, organization process      41-15
Endoatom      26-9—26-10
Endohedral doping method, encapsulation, molecules and clusters      48-8
Endohedral doping method, metal embedded cages      48-7—48-8
Endohedrally doped fullerenes, $C@C_{60}$ systems      see "$C@C_{60}$ systems"
Endohedrally doped fullerenes, $C_{72}$ and $C_{74}$      33-13—33-14
Endohedrally doped fullerenes, $C_{80}$, $D_{2h}$ configuration, vibrational analysis      33-16
Endohedrally doped fullerenes, $C_{80}$, $D_{5d}$ structure      33-16
Endohedrally doped fullerenes, $C_{80}$, endohedral doping      33-14
Endohedrally doped fullerenes, $C_{80}$, energies of, isomers      33-15
Endohedrally doped fullerenes, $C_{80}$, energy characteristics calculation      33-17
Endohedrally doped fullerenes, $C_{80}$, geometry-optimized structures, isomers      33-14
Endohedrally doped fullerenes, $C_{80}$, HOMO, LUMO energies and the interfrontier molecular orbital energy gaps (AE), isomers      33-15 33-16
Endohedrally doped fullerenes, $C_{80}$, properties of, isomers      33-14 33-15
Endohedrally doped fullerenes, electron acceptors      36-8—36-9
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, $C_{60}H_{2}$ and $Be@C_{60}H_{2}$ structural properties      33-12
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, C-H bond lengths      33-10
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, electrostatic field map      33-11
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, geometry-optimized three-dimensional structures      33-10
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, HOMO-LUMO energy gap      33-11 33-12
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, hydrogenation      33-9
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, In-56 and In-66 types $Be@C_{60}H_{2}$ isomers structures      33-12
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, isomers energies      33-12 33-13
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, molecular orbital energy spectra      33-11 33-12
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, negative charge accumulation      33-10
Endohedrally doped fullerenes, hydrogenated $C_{60}$ systems, various energies of the systems      33-10
Endohedrally doped fullerenes, metallofullerenes ($M_{p}@C_{nc}$)      33-17—33-18
Endohedrally doped fullerenes, plasmons      35-9—35-10
Endohedrally doped fullerenes, suspensions      40-6—40-7
Evaporative ensemble, dissociation energy      15-6
Evaporative ensemble, dissociation rate      15-5
Exchange-correlation potential      32-3
Exohedral doping method, coating      48-11
Exohedral doping method, hydrogenation, binding energy      48-9
Exohedral doping method, hydrogenation, comparison, HOMO orbitals      48-10
Exohedral doping method, hydrogenation, frontier orbitals      48-9
Exohedral doping method, hydrogenation, icosahedral group      48-10
Exohedral doping method, hydrogenation, localization, HOMO orbital      48-8—48-9
Exohedral doping method, hydrogenation, structures      48-8—48-9
Exohedral doping method, latest developments      48-11—48-12
Ferroelectricity      10-8—10-9
Ferromagnetic cluster, definition of      10-9—10-10
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå