Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Carmeli M. — Classical Fields: General Gravity and Gauge Theory
Carmeli M. — Classical Fields: General Gravity and Gauge Theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Classical Fields: General Gravity and Gauge Theory

Àâòîð: Carmeli M.

Àííîòàöèÿ:

This textbook for a one-year graduate course in theoretical physics explores the classical theory of fields with a mix of electrodynamics, gauge fields, and gravitation. Carmell (Ben Gurion) develops the geometry of curved spacetime, the Einstein field equations, gravitational fields of elementary mass systems, the equations of motion in general relativity, spinor formulation of gravitation and gauge fields, and the gauge theory of gravitation.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1982

Êîëè÷åñòâî ñòðàíèö: 650

Äîáàâëåíà â êàòàëîã: 09.06.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Riemann curvature tensor, peeling-off property of      241
Riemann curvature tensor, spinor equivalent of      434—435
Riemann curvature tensor, symmetry of      70—71
Riemannian geometry      46 52
Riemannian spacetime      33 268
Right dual      70
Rioci spinor      438—439 467
Robertson, H.P.      163
Robinson — Bel tensor      495
Robinson, I.      390 406
Robinson, J.R.      390 406
Rohrilch, F.      404
Roll, P.O.      14 19
Rosen, N.      163 168 178 204
Roskies, R.      552
Rotating black hole      404
Rotating body      212 389 391
Rotating coordinate system      12
Rotating star      389 390
Rotation      141 455 457 458
Rotation, complex      482 491
Rotation, duality      495
Rotation, generator of      172
Rotational symmetry      172
Rotationally symmetric field      172
Rotations around null vectors      458—461
Rotator      366
Rudolph, E.      629 631
s $\mu$ (matrices)      472—476
Sato, H.      366 383 406
scalar      28 137
Scalar curvature      238
Scalar density      35
Scalar density, Lie derivative of      121
Scalar field      102 103 114 398
Scalar function      22 114 115
Scalar product      26
Scalar product, Hermitian      388
Scalar, optical      141 394
Scalar, Ricci      71—72 394 437 465 467 468
Scattering formula      259
Schattner, R.      627 631
Schiff, L.I.      322 364
Schiffer, S.R.      214 215
Schild, A.      267 363 405
Schroedinger like equation      154
Schwarz, R.A.      336 337 363
Schwarzschild      163
Schwarzschild metric      134 144 155—162 179 180 182 183 230 246 323 365 379 380 386 393 397
Schwarzschild metric in radiation coordinates      246
Schwarzschild metric, Eddington — Finkelstein form of      164—165 196
Schwarzschild metric, exterior      198
Schwarzschild metric, exterior, eneralization of      180 385
Schwarzschild metric, interior      198
Schwarzschild metric, linear approximation form of      215
Schwarzschild metric, maximal extension of      165—168
Schwarzschild radius      160
Schwarzschild singularity      163
Schwarzschild, K.      155 196 389 390
Shapiro, I.I.      227 265
Shear      141 240 241
Similarity transformation      534
Single-pole particle      324
Singularity      189 273 275 281 311 322
Singularity, coordinate      165
Singularity, naked      390
Sirius A and B (binary stars)      262
SL(2,C) (group)      149 397 407—413 415 416 455—463 472 476 491 509 554
SL(2,C) (group), spinor representation of      408—411
SL(2,C) gauge theory of gravitation      135 554 555 558 569—572
SL(2,C) gauge theory of gravitation and Newman — Penrose method      554 571—572
SL(2,C) gauge theory of gravitation, Euclidean version of      579
SL(2,C) gauge theory of gravitation, fiber bundle foundations of      562—569
SL(2,C) gauge theory of gravitation, Palatini-type variational principle for      572—579
SL(2,C) gauge theory of gravitation, renormalizability of      558 578 615—616
Slow motion approximation      277—310
Slow-down of fast moving particle      230
Smith, W.B.      265
Sodano, p.      578 579 616
Solar corona      229
Solar gravitational radiation      259—262
Soliton solutions      559
Solution of coupled Einstein — Yang — Mills field equations      608—616
Solution of first approximation field equations      287—290
Solution of second approximation field equations      290—296 301—310
Source of gauge field      470
Space of representation      409
Space, bundle      559
Space, conformal      73
Space, cotangent      557
Space, dual      557
Space, Euclidean      33
Space, internal      445
Space, isospin      448
Space, linear      409
Space, metric      33
Space, tangent      416
Space, tangent vector      556
Space, topological      555
Space, twistor      615
Spacelike circle      236
Spacetime      562
Spacetime structure and spinors      560—561
Spacetime, conformal structure of      235 239
Spacetime, curved      13 20 415 416
Spacetime, Minkowskian      66 123 180 235 236 278
Spacetime, structure of      122—130
Special linear group      388
Special relativity      212
Spectral resolution of intensity of dipole and quadrupole      256—257
Spectrum of radiation      255
Speed of light wave      227
Spherical coordinates      381
Spherical functions      7
Spherical harmonics      6
Spherical symmetric distribution      156
Spherical waves      235
Spheroidal coordinates      377 383 389
Spheroidal coordinates, prolate      177 181 375 379
Spheroidal wave functions      399
Spin      416
Spin coefficient equations      137 577
Spin coefficients      135—136 393 397 567 571 602 608
Spin curvature interaction      326
Spin matrices      474
Spin tensor      324 333 343
Spin two field      237 238 240 243
Spin-weight      398
Spin-weighted spherical harmonics      399
Spin-weighted spheroidal harmonics      399
Spin-zero field      238
Spinning object      382
Spinning particle      322—328
Spinor affine connection      419 420 424 426 566
Spinor basis      562
Spinor equivalent to the dual of electromagnetic field tensor      426
Spinor equivalent to the dual of gauge field strength tensor      451 466
Spinor equivalent to the dual of Riemann curvature tensor      435 437 443
Spinor equivalent to the dual of Weyl conformal tensor      443
Spinor equivalent to the Einstein tensor      439
Spinor equivalent to the electromagnetic field tensor      425
Spinor equivalent to the electromagnetic potential vector      425
Spinor equivalent to the energy-momentum tensor      428
Spinor equivalent to the energy-momentum tensor of gauge field      452
Spinor equivalent to the gauge field strength tensor      450 466
Spinor equivalent to the gauge potential vector      450
Spinor equivalent to the geometrical metric tensor      417 418 434
Spinor equivalent to the isovector      454
Spinor equivalent to the null vector      419
Spinor equivalent to the real tensor      419
Spinor equivalent to the Ricci tensor      438
Spinor equivalent to the Riemann curvature tensor      432 434 435 439 440
Spinor equivalent to the tenser (general)      417
Spinor equivalent to the tracefree Ricci tensor      438 439
Spinor equivalent to the Weyl conformal tensor      440
Spinor formulation of Euclidean gauge fields      476—479
Spinor formulation of gravitation and gauge fields      407—480
Spinor method, classification by      500—507
Spinor metric      561
Spinor ray      419
Spinor representation of the group SL(2,C)      408—411
Spinor representation of the group SL(2,C), realization of      409
Spinor structure      555
Spinor, complex conjugate of      419
Spinor, covariant derivative of      419—421
Spinor, curvature      428—434
Spinor, Einstein      439 468
Spinor, electromagnetic field      426 428 483
Spinor, electromagnetic potential      425
Spinor, energy-momentum      452—453
Spinor, gravitational      436—438 467
Spinor, Hermitian      419
Spinor, Levi-Civita metric      416 417
Spinor, Maxwell      426 463
Spinor, Ricci      438—439 467
Spinor, tracefree Ricci      438 439 467
Spinor, two-component      407—415
Spinor, Weyl      437 439—442 467 493 500
Spinor, Yang — Mills      450—452 453 455
Spinorial Ricci identity      430
Spinors      408 445 453
Spinors and spacetime structure      560—561
Spinors in curved spacetimes      415—425
Spinors, basis      445 446
Spinors, correspondence between tensors and      416—419
Spinors, electromagnetic field      425—428
Spinors, Euclidean gauge field      471—480
Spinors, gauge field      450—455
Spinors, gauge potential      450
Spinors, gravitational field      434—445
Spinors, SU(2)      453—455
Spinors, transformation rules for Yang — Mills      455—464
Spinors, two-component      407—415 475 476 560
Spitzer, L.Jr.      264
Standard realization      517
standing waves      199 200
Static gravitational field      130—134 156 172
Stationary axisymmetric metric      365—367
Stationary gravitational field      130—134
Steenrod, N.E.      616
Stephani, H.      405
Stokes theorem      44
Stokes theorem, generalization of      45
Stone, M.L.      265
Stress tensor      189
Stress-energy tensor, Isaacson      403
Structure constants      471
Structure group      562
Structure of spacetime      122—130
Struik, D.J.      77 S3
Sturm — Liouville eigenvalue problem      399
SU(1,1) (group)      388
SU(2) (group)      445 447 471—480 509
SU(2) gauge field theory      445—450
SU(2) gauge fields (classification of)      520—528
SU(2) gauge invariance      446
SU(2) spinor Indices      445
SU(2) spinors      453—455
SU(2) transformation      446—447
SU(3) (group)      509
SU(4) (group)      509
Subbundle      559
Sudarshan, E.C.G.      404
Summation convention      12 22
Sun      214 221 227 225 227 228 233 260 261 262
Sun, Schwarzschild radius of      160 228 229 230
Superior correction      228 229
Supplementary condition      326 337—339 356 358
Supplementary condition in linearized gravitation      209
Supplementary condition, Corinaldesi — Papapetrou      326 331—334 338 360
Supplementary condition, Mofiler      326
Supplementary condition, Pirani      326 338
Supplementary condition, Tulczyjew      326 338
Surjection      559
Symmetric tensor      26
Symmetric tensor, completely      27
Symmetrization      28
Symmetry of curvature spinor      430—431
Synge, J.L.      163 618 631
Tambunno, L.      366 405
Tangent space      416
Tangent vector space      556
Taub, A.H.      406
Tensor algebra      24—26
Tensor densities      35—45 237
Tensor densities, definition of      35—37
Tensor densities, Levi-Civita      37—45 422 423 426
Tensor densities, weight of      35
Tensor field      557
Tensor product      557
Tensor product bundle      563 564
Tensor, algebra of      24—26
Tensor, antisymmetric      26
Tensor, completely skew-symmetric      27
Tensor, completely symmetric      27
Tensor, conformal      72—76 237 238 367
Tensor, contravariant      23
Tensor, covariant      23
Tensor, curvature      67—80 237 428 429 431 432 434—435
Tensor, definition of      23—24
Tensor, dual      38 107
Tensor, Einstein      71—72
Tensor, electromagnetic      106 425 427 583
Tensor, energy-momentum      82 85 86 97 110 142 174 183 185 188 189 190 196 204 210 242 251 281 296 312 336 394—396 600
Tensor, Lie derivative of      118—121
Tensor, mass quadrupole moment      5 7 253 256
Tensor, metric      12 33—35 459
Tensor, mixed      24
Tensor, moment of inertia      5
Tensor, order of      23
Tensor, quadrupole moment      5 7 253
Tensor, Ricci      71—72 76 394 465
Tensor, Riemann      67—80 237 428 429 431 432 434—435 464 465
Tensor, Robinson — Bel      495
Tensor, skew-symmetric      26
Tensor, spin      324 333 343
Tensor, stress      189
Tensor, stress-energy      403
Tensor, symmetric      26
Tensor, torsion      46
Tensor, tracefree Ricci      72 438—439 465
Tensor, two-point      618 621
Tensor, Weyl      72—76 237 238 367 464 488
Tensors      23—26
Tensors, correspondence between spinors and      416—419
Tensors, symmetry of      26—33
Test particle in external gravitational field      267—268
Test particle with structure      322—323
Tests of general relativity theory      213—234
Tetrad components      136—137
Tetrad components of Maxwell tensor      142
Tetrad components of Ricci tensor      137 394
Tetrad components of Weyl tensor      136 394
Tetrad form of Maxwell's equations      142 582
Tetrad formulation of Einstein field equations      135—143
Tetrad vectors      556
Tetrad, null      135 240 392 397 458 459
Teukoisky equation      147 398—405
Teukoisky, S.A.      143 154 396 406
Thomas precession      626 628 630
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå