Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Carmeli M. — Classical Fields: General Gravity and Gauge Theory
Carmeli M. — Classical Fields: General Gravity and Gauge Theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Classical Fields: General Gravity and Gauge Theory

Àâòîð: Carmeli M.

Àííîòàöèÿ:

This textbook for a one-year graduate course in theoretical physics explores the classical theory of fields with a mix of electrodynamics, gauge fields, and gravitation. Carmell (Ben Gurion) develops the geometry of curved spacetime, the Einstein field equations, gravitational fields of elementary mass systems, the equations of motion in general relativity, spinor formulation of gravitation and gauge fields, and the gauge theory of gravitation.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1982

Êîëè÷åñòâî ñòðàíèö: 650

Äîáàâëåíà â êàòàëîã: 09.06.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Maxwell spinor      426 463
Maxwell spinor, decomposition of      493
Maxwell tensor, tetrad components of      142
Maxwell's equations      105—112 227 237 273
Maxwell's equations, tetrad form of      142 582
Mean curvature      76
Mechanics, Newtonian      2—3 33
Menukin, A.B.      19
Mercury      221 227 228 229 230
Metric equations      571
Metric spaces      33
Metric spinor      416 417 420
Metric tensor      12 33—35 459
Metric tensor, spinor equivalent of      417 418 434
Metric, axisymmetric      365—367
Metric, Curzon      380
Metric, Demianski — Newman      386 387
Metric, Einstein — Rosen      198—204 235
Metric, exterior Schwarzschild      198
Metric, exterior Tolman      195—196
Metric, flat-space      135 418 434
Metric, generalization of static      366
Metric, generalized Kerr      391
Metric, generalized Schwarzschild      385
Metric, interior Schwarzschild      198
Metric, inverse      186
Metric, Kerr      131 144 185 323 366 382—383 384 386 387 389—396 396=404
Metric, Kerr — Newman      608 610
Metric, Kerr — Schild      390
Metric, Lewis      368
Metric, Minkowskian      11 206 418 419
Metric, nonstatic      183
Metric, nonstationary Kerr      389—396
Metric, NUT Taub      385—387
Metric, Papapetrou      368—372 379
Metric, radiating      183
Metric, radiative Kerr      390—391
Metric, Reisaner      168 612
Metric, Schwarzschild      134 144 155—162 179 180 182 183 230 246 323 365 366 379 380 386 393 397
Metric, stationary axlsymmetric      365—367
Metric, time dependent      189
Metric, Tolman      189 195
Metric, Tomimatsu — Sato      366 383—384
Metric, Vaidya      183—189 323 331 336 358 389 390 391 393 395
Metric, variable-mass Kerr      391
Metric, Weyl — Levi-Civita      172 176 181 182 365 366 384
Metric, Yasskin      608
Mills, R.L.      553 565 579 612
Minimal coupling principle      18
Minkowskian metric      11 206 418 419
Minkowskian spacetime      66 123 180 235 236 278
Misner, C.W.      168 336 337 363 363 616
Misra, M.      390 405
Mixed tensor      24
Moebius transformation      409 410
Moessbauer effect      211
Mofffler's supplementary condition      326
Moffler, C.      326 363
Moment of inertia tensor      5
Moment, dipole      180
Moment, quadnipole      177 182 221 253 384
Momentum and angular momentum      623—625
Momentum density      250
Momentum flux density      250
Momentum, angular      210 212 217 250—251 330 384 623—625
Momentum, four-      249—250
Momentum, linear      329 623—625
Momentum-velocity relation      628—630
Monochromatic waves      199
Monopole solution of Yang — Mills equations      603—607
Monopole, magnetic      590—593
Moroz, B.Z.      552
Motion in centrally symmetric gravitational field      215—222
Motion in charged particles      310—322
Motion in Schwarzschild field      328—336
Motion in Vaidya gravitational field      336—363
Motion of gyroscope      322 626
Motion of planet      219
Motion of spinning panicles      322—328
Motion of test particle      61 65 88 231 267
Motion, elliptic      195
Motion, hyperbolic      195
Motion, integrals of (general case)      358—363
Motion, integrals of (particular cases)      343—358
Motion, parabolic      195
Moving frame      556
Multipole      180
Naimark, M.A.      480
Naked singularity      390
Neumann function      9
Neutrino equation      151
Neutrino field      398 404
Newman — Penrose equations      135—143 145—147 244 403 554 577
Newman — Penrose method and SL(2,C) theory      554 571—572
Newman — Penrose quantities      402
Newman — Penrose variables      571
Newman, E.T.      135 154 366 386 404 405 543 601 676
News function      241
Newton's gravitational constant      3 85 86 95
Newton's law of motion      1 4 10
Newton's theory of gravitation      3—4 231
Newton, I.      13 14
Newtonian equations of motion      2—3 88 217 277 282
Newtonian force      3 296
Newtonian gravitation      1—10 90 275
Newtonian limit of Einstein field equations      88—93
Newtonian mechanics      2—3 33 231 624
Newtonian potential      3—10 85 88 90 92
No-hair theorem      366
Nomizu, K.      616
Non-Abelian gauge fields      206 560 593—993
Non-Abelian gauge fields in the presence of gravitation      593—595
Non-Abelian group      560
Non-Riemannian geometry      46 52
Noncoordinate basis      556
Noninertial system of coordinates      11 12
Nonrotating black hole      397
Nonrotating star      365
Nonstatic metric      183
Nonstationary Kerr metric      389—396
Null cone      235 236 237
Null coordinates      183 337 459
Null curve      66
Null direction      389 492—500
Null experiments      13—16
Null geodesics      65—66 222 235 559
Null infinity      240
Null rotation      458
Null tetrad      135 240 392 397 458 459
Null tetrad approach to Vaidya metric      185—189
Null tetrad formulation of Yang — Mills theory      596—601
Null tetrad formulation of Yang — Mills theory, in fiat spacetime      601—603
Null tetrad method      397
Null tetrad quantities      391—394
Null tetrad vectors      155 392
Null vector      183 419 492
NUT-Taub metric      385—387
O(2,C) (group)      563
O(3) (group)      445
O(4) (group)      471—480
One-forms      557
Operator, Casimir      334 346 348 350 358
Operator, commutator      421 429 433
Operator, covariant derivative      420 421
Operator, D'Alembertian      208 242 278
Operator, differential      433 557
Operator, Dirac differential      473
Operator, divergence      372
Operator, gradient      3 372 376
Operator, Laplacian      3 91 370 372 376 377
Operator, representation      409
Optical scalars      141 394
Optics, geometrical      185 188
Orbitral equations      340—343
Oriented manifold      555
Orthogonal gauge field      471
Other tests of general relativity theory      227—230
Palatini variational principle      103—105 574
Palatini-type variational principle for SL(2,C) gauge theory of gravitation      572—579
Panov, V.I.      14 19
Papapetrou equations of motion      323—328 338
Papapetrou metric      368—372 379
Papapetrou — Corinataesi equations of motion      328—336
Papapetrou, A.      204 322 323 324 325 326 328 331 363 631
Papinl, G.      265
Parallel displacement      470
Particle Physics      vii
Patel, L.K.      390 406
Paull matrices      416 418 447 454 455
Peeling-off property of Riemannian tensor      241 401
Pekar, D.      13 14 19
Pendulum      14
Penrose classification scheme      492—507
Penrose diagram for classification of gravitational field      503 505
Penrose diagram for conformal structure at infinity      240
Penrose diagram for three dimensional cone      237
Penrose diagram for two-dimensional manifold      236
Penrose, R.      135 154 235 265 480 492 499 552
Peres, A.      297 299 363
Perfect fluid      189
Perihelion advance      220 310
Periodic solutions      199—200
Perturbation on gravitational background      143—151
Perturbation on Kerr metric background      396—405
Petrov classification scheme      488—492 507 509
Petrov type D field      144 188
Petrov's canonical form      498
Petrov, A.Z.      74 83 552
Pettengill, G.H.      265
Pfaffian equation      403 405
Phase group      563
Phase transformation      385 388 389
phase velocity      402
Pirani's supplementary condition      326 338
Pirani, F.A.E.      326 331 332 338 364 552
Planck's constant      102 259
Plane waves      235 243 252 255 509
Plebanski, J.      281 363
Poincare group      13 123—128 207 243 349 350 358
Poincare transformation      207
Point at infinity      235
Poisson equation      3 4 210 211 299 319
Polarization and energy      401—404
Pole-dipole particle      324
Polynomials      408
Polynomials, Chern      551
Polynomials, Legendre      6 179 377
Pontrjagin forms      550—552
Pontrjagin index      473
Post-Newtonian approximation      311 317
Post-Newtonian force      296 298
Post-Newtonian Lagrangian      316—322
Potential and field strength      446
potential energy      4 92 280 299 618
Potential energy, Newtonian      3 4 6 92
Potential, Emit      373—377
Potential, general relativistic      85
Potential, gravitational      227
Potential, Newtonian      3—10 83 88 92
Potential, twill      374
Potential, Yang — Mills      446 450 472
Pound, R.V.      214 215
Press, W.H.      144
Pressure      189
Price, R.H.      144 134
Primed indices      413 455
Principal null direction      389 492—500
Principal null vector      492
Principle of equivalence      16—17 51 109 555 558
Principle of general covariance      17—19 109
Principle of minimal coupling      18
Product, direct      25
Product, inner      557
Product, scalar      26
Product, tensor      557
Projection      559 562
Projective plane      235
Prolate spheroidal coordinates      177 181 375
Propagation of light      222
Proper gauge      521
Proper mass      282
Proper time      11 231 559
Properties of gravitational field      205—265
Properties of Weyl tensor      73—76 488—489
Pseudoscalar      28 38
Pseudotensor      38
Pseudotensor, energy-momentum      189 247—255
Pseudovector      28
Pulsating star      161
Pulse solutions      200—204
Pure gravitational field equations      583—586
Quadrupole moment      177 182 221 253 384
Quadrupole moment tensor      5 7 253 256
Quadrupole radiation formula      253—254 256
Quadrupole, spectral resolution of intensity of      256—257
Quantization, remarks on      578—579
Radar echo experiment      127
Radiating metric      183
Radiating nonrotating star      390
Radiating rotating body      389
Radiating rotating star      390
Radiation formula, dipole      256 262
Radiation formula, quadrupole      253—254 256
Radiation of low frequencies in collision      257
Radiative field      183
Radiative Kerr metric      390—391
Raising and lowering indices      34 416 455 572
Realization      517—528
Realization of spinor representation      409—411
Rebbi, C.      472 479 480
Rebka, O.A.      214 215
Red shift, gravitational      213—215
Reducible quantity      30
Regge, T.      143
Regionally symmetric line element      172
Regionally symmetric line element, Lagrangian density for      176 177
Reina, C.      176 366 405
Reisaner metric      168 612
Relation to Riemann tensor      431—433
Remarks on quantization      578—579
Renner, J.      14 79
Renormalizability of SL(2,C) theory      558 578 615—616
Representation of group SL(2,C)      408—411
Representation of Lie groups      552
Representation of Lorentz group      455—463 491
Rest frame      333
Retarded solution      209 251 278 279 288
Retarded time      184 201 251 278 279 288
Retarded time coordinate      337 343 389 390 391 459
Ricci identity      69—70
Ricci identity, spinorial      430
Ricci rotation coefficients      135
Ricci scalar      71—72 394 437 465 467 468
Ricci tensor      71—72 76 394 465
Ricci tensor, tetrad components of      137 394
Ricci tensor, tracefree      72 438—439 465
Riemann curvature tensor      67—80 237 428 429 431 432 434—435 464 465
Riemann curvature tensor, decomposition of      78 434—435 443 569
Riemann curvature tensor, dual of      70 71 443
Riemann curvature tensor, linear expression of      208
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå