|
|
Результат поиска |
Поиск книг, содержащих: Idempotent, primitive
Книга | Страницы для поиска | Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 186 | Higgins P. — Techniques of Semigroup Theory | 33, 38, 42 | Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 52, 61, 138, 164, 226 | Howie J.M. (ed.) — An Introduction to Semigroup Theory | 68 | O'Donnell C.J. — Incidence Algebras | 263 | Artin E., Nesbitt C.J., Thrall R.M. — Rings with Minimum Condition | 33 | Miller W. — Symmetry Groups and Their Applications | 98 | Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 186 | Whitehead G.W. — Elements of Homotopy Theory | 698 | Karpilovsky G. — Unit groups of classical rings | 2 | Rutherford D.E. — Substitutional Analysis | 32 | Postnikov M. — Lectures in Geometry. Semestr V. Lie Groups and Lie Algebras | 324 | de Graaf W.A. — Lie Algebras: Theory and Algorithms | 309 | Bruck R.H. — A survey of binary systems | 44 | Porteous I.R. — Clifford Algebras and the Classical Groups | 14 | Lounesto P. — Clifford algebras and spinors | 52, 61, 138, 164, 226 | Karpilovsky G. — The Jacobson radical of classical rings | 1 | van Lint J.H. — Coding Theory | 50, 51 | Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists | 205 | Magurn B.A. — An algebraic introduction to k-theory | 268 |
|
|