|
|
 |
| Результат поиска |
Поиск книг, содержащих: Feigenbaum constant
| Книга | Страницы для поиска | | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 193 | | Brin M., Stuck G. — Introdution to dynamical system | 189 | | Hand L.N., Finch J.D. — Analytical Mechanics | 458—459, 487, 490 | | Lynch S. — Dynamical Systems with Applications Using Mathematica® | 279 | | Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 47 | | Holden A.V. — Chaos | 44, 51, 72, 150, 226, 229 | | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 2, 280 | | Holden A.V. — Chaos | 44, 51, 72, 150, 226, 229 | | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 139 | | Kenzel W., Reents G., Clajus M. — Physics by Computer | 83, 88 | | Ilachinski A. — Cellular automata. A discrete universe | 182 | | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 481 | | Falconer K. — Fractal geometry: mathematical foundations and applications | 193 |
|
|