|
|
 |
| Результат поиска |
Поиск книг, содержащих: Dirichlet's principle
| Книга | Страницы для поиска | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 362 | | Evans L.C. — Partial Differential Equations | 42, 434 | | Bergman S., Schiffer M. — Kernel Functions and Elliptic Differential Equations in Mathematical Physics | 19, 372 | | Shafarevich I.R., Shokurov V.V., Danilov V.I. — Algebraic geometry I: Algebraic curves algebraic. Manifolds and schemes | 65 | | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 719 | | Zauderer E. — Partial Differential Equations of Applied Mathematics | 536, 599 | | Šimša J., Kucčra R., Herman J. — Counting and Configurations: Problems in Combinatorics, Arithmetic, and Geometry | 2, 5, 33, 107 | | Rauch J. — Partial differential equations | 178ff | | Frankel T. — The geometry of physics: an introduction | 373 | | Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 161 | | Forsyth A.R. — Theory of functions of a complex variable | 408 | | Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 52 | | Cofman J. — What to Solve? Problems and Suggestions for Young Mathematicians | 184 | | Frankel T. — The geometry of physics: An introduction | 373 | | Morrey C. — Multiple integrals in the calculus of variations | 5 |
|
|