| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Scott A. — Neuroscience: a mathematical primer |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | McCulloch, Warren      9 11 233 235 237 252 McLeod, J.B.      135
 McMullen, T.      279
 Meaningful information      9 310
 Mel, Bartlett      213 215 217 220 243
 Membrane(s)      3 49—65
 Membrane(s) batteries      37 38 60—63 73 80 127
 Membrane(s) capacitance      31 53—55
 Membrane(s) energetics      49 50—52
 Membrane(s) model      60—62
 Membrane(s) patches      10 219
 Membrane(s) permeability      4 37 61—63
 Membrane(s) permeability in H-H model      70—73
 Membrane(s) pores (channels)      61 76—77
 Membrane(s) proteins, intrinsic      28 45 61
 Membrane(s) time constant      190 191 199
 Memory      8 279—280
 Memory in associative neural nets      247—248
 Memory in associative neural nets cell assembly theory      261—262 279—280 307—308
 Microprobe arrays      see Multiple electrode recordings
 Milner, Peter      270 272
 Mobility, ionic      56
 Molecular Dynamics      28—30 34
 Molecular dynamics, structure      50
 Molecular dynamics, vibrations      33
 Mollusk (Aplysia)      284
 Momentum density      317
 Monkeys, experiments on      284
 Moore, John W.      140 141 147 167
 Mornev, Oleg      202
 Morphogenesis      49
 Moth (Manduca sexto)      285
 Moving coordinate system      134 323—324
 Mueller, Paul      52
 Multiple electrode recordings      18 19 285 287
 Multiplex neuron      43 44 46 222
 Myelinated nerve(s)      6 7 8 27 74 139—159
 Myelinated nerve(s) continuum limit      145—146 147 159
 Myelinated nerve(s) energy expended in      7 139 140
 Myelinated nerve(s) evolutionary design temperature (EDT)      155
 Myelinated nerve(s) evolutionary design temperature perspective      153—158 159
 Myelinated nerve(s) failure      146 159
 Myelinated nerve(s) impulse speed      144—146
 Myelinated nerve(s) integrate and fire model      154 156
 Myelinated nerve(s) internode conduction time      150
 Myelinated nerve(s) internode conduction time predicted for artic fish      158
 Myelinated nerve(s) internode conduction time vertebrates      152
 Myelinated nerve(s) internode conduction time, general expression for      154
 Myelinated nerve(s) internode distance      151 152 157
 Myelinated nerve(s) numerical studies      147—148
 Myelinated nerve(s) optimal design of      149 153—159
 Myelinated nerve(s) saltatory limit      146—147 159
 Myelinated nerve(s) statistical properties of      149 150 157—158
 Myelinated nerve(s) various vertebrates      152
 Myelinated nerve(s) warm- vs. cold-blooded animals      153 155 157 158 159
 Myelinated nerve(s), electrical model of      140—144
 Na/K—ATPase      64
 Nagumo, Jin-ichi      5 123 136
 Narcotization of nerve      85—86 126
 Navier—Stokes equations      295
 Necker cube      262 272—273 280
 Negative feedback      13—14 68 304
 Neocortical structure      265 307—308
 Nernst potential      see Diffusion potential
 Nernst, Walther      3 59
 Nerve cell      see Neuron
 Nerve impulse(s)      27 31—33 34
 Nerve impulse(s), FitzHugh — Nagumo model of      130—132
 Nerve impulse(s), Hodgkin—Huxley model of      9 82—84
 Nerve impulse(s), leading-edge model of      95—106
 Nerve impulse(s), Markin — Chizmadzhev model of      115—122
 Nerve impulse(s)on myelinated nerves      7 139—159
 Nerve impulse(s)on myelinated nerves squid giant axon      4 84 212
 Nets with circles      11 12 18 233 234 241—248
 Nets without circles      11 12 233 234—241
 Neural models      8—11 19 41—43 187—225
 Neural models general structure      25—28
 Neural network theory      9 43 233—252
 Neuristor(s)      5 104 123 140 199—200
 Neuron, generic      25—28 45
 Neurotransmitters      35 36 37 44
 Newton, Isaac      29 50 294
 Newtonian dynamics      28—31 45 58 129 293 295
 Newtonian dynamics vs. nonlinear diffusion      33—36
 Newtonian dynamics, nature of time in      34 301
 Nicolelis, M.A.      282 285
 Nicolis, J.S.      309
 Noble, D.      199
 Nonlinear diffusion      2 5 34 199—206
 Nonlinear diffusion discrete      144
 Nonlinear diffusion in cortical field theories      248—250
 Nonlinear diffusion, equation for      31—33 78 318 324
 Nonlinear dynamic hierarchies      28 45 293
 Nonlinear dynamic hierarchies biological      293—294
 Nonlinear dynamic hierarchies cognitive      305—306
 Nonlinear dynamic hierarchies neural      41
 Nonlinearity, definition of      300—301
 Nonlocal phenomenon      119
 Null space      322 332
 Numerical models of neurons      220—221
 Numerical models of neurons compartmental codes      215 221 222—223
 Numerical models of neurons Fourier and Laplace transforms      221
 Numerical models of neurons Green functions      221
 Numerical models of neurons statistical models      18 222 225
 Numerical models of neurons statistically equivalent neurons      220—221
 Occipital (optic) lobe      11 307
 Offner, F.      103
 Ohm’s Law      39 40 77 141
 Open systems      34 316
 Open systems vs. closed systems      303
 Owl, auditory map of      217
 Paintel, A.S.      153
 Palm, Gunther      276 278
 Panizza, Bartolomeo      11
 Parietal lobes      307
 Parnas, I.      219
 Pastushenko, V.F.      105 202
 Patch clamp      76
 Patterns in context      12
 Perceptron      12 233 237—241
 Perceptron augmented pattern vector      239
 Perceptron learning algorithm      233 237
 Perceptron linear discriminant plane      238
 Perceptron training period      233
 Perceptron training period theorem      240
 Perceptron weight vector      238 300
 Periaxonal space      87 219
 Period of latent addition      235
 Perpetual isolation experiments      264—265
 Perspiration      13
 Perturbation theory for nerve impulses      331—333
 Phase plane analysis      99—102
 Phase sequence      17 260 264 286 305 308
 Phase space      30 32—33 302 303 307
 Phase space analysis of F-N equation      5 124—127
 Phase space analysis of H-H system      80—82
 Phase space equations, autonomous      81
 Phase space singular points in      81
 Phase space trajectories, heteroclinic vs. homoclinic      81—82 91
 Phase space traveling-wave analysis      80—82 91
 Phase waves      251
 Physicalism      295 306
 Piecewise FitzHugh — Nagumo model      123 126
 Piecewise linear model      103—104 105
 Pitts, Walter      9 11 233 235 237 252
 Place cells      287
 Planck, Max      59
 Planetary motion      30—31 33 129 295
 Poggio, T.      221
 Poirazi, P.      243
 
 | Polling error      40 Positive feedback      14—17 302—303 304 311
 Positive feedback in biological hierarchy      294
 Positive feedback in biological hierarchy brain models      234 244
 Positive feedback in biological hierarchy cell assemblies      268
 Positive feedback in biological hierarchy morphogenesis      252
 Positive feedback in biological hierarchy nerve impulse      2 7 79
 Postsynaptic membrane      36 37 38
 Potassium “turn-on” variable      73 76 95—96 105 319
 Potassium “turn-on” variable conductivity      36 62 70 72—73 75
 Potassium “turn-on” variable current, components of      62 70 71
 Potassium “turn-on” variable ion concentration (in periaxonal space)      87 219
 potential energy      29 30 34
 Power balance      80 127—129 136 194
 Power, definition of      318
 Precursor (“skirt”)      119 122
 Prediction      30 32
 Presynaptic membrane      36 37
 Pritchard, R.M.      263
 Propagation speed on squid nerve      33 83 84 97—98
 Protein Data Bank      30
 Proteins      29 300
 Proteins immense numbers of      297
 Proteins intrinsic      10 53 57 61 76 153
 Protobiological molecules      14 15
 Psychological time      310
 Purkinje cell      207 208
 Pyramidal cells      189 215 217 278
 Quantum theory      31 34 58
 Quick, D.C.      219
 Rabbit sciatic nerve      6 7 139 152
 Rail, Wilfred      196 205 221
 Raminsky, M.      158
 Ramon y Cajal, Santiago      8 11 12 208 224
 Ramon, F.      167
 Ranvier, nodes of      see Active nodes
 Rapid eye movement (REM) sleep in rats      287
 rat      264 285—287
 Rayleigh, Lord (John William Strutt)      50
 Reaction diffusion equation      see Nonlinear diffusion
 Reaction time      3 154
 Reciprocity theorem      198
 Recovery      105 249
 Recovery models      115—124
 Recovery variable      5 123—124 143
 Reductionism, cognitive      306
 Reductive materialism      293 294—296
 Reductive materialism arguments against      296—305
 Reentry      14
 Refractory zones      3 5 87—89 91 127
 Relative dielectric constant      55
 Resting conductance      188
 Resting conductance potential      31 63—64 70
 Retinal light intensity      13
 Retrodiction      30 32
 Richer, Ira      146
 Rinzel, John      126 221
 Rochester, N.      272
 Rosenblatt, Frank      12 233 237
 Royal Institution of London      2—3
 Rudin, Donald      52
 Rushton, W.A.H.      153 159
 Sabah, N.H.      91
 Safety factor for nerve impulse      33 87 111 204
 Safety factor in cell assemblies      267 268
 Safety factor in cell assemblies Markin—Chizmadzhev model      122
 Safety factor in cell assemblies multiplex neuron      10 210
 Saltatory conduction      7 139 140 158
 Sattinger, D.H.      328
 Schmitt, F.O.      44 45
 Schmitt, O.H.      166 169
 Schrodinger, Erwin      31 35
 Schrodinger’s equation      295
 Schuster, Peter      309
 Sciatic nerve(s)      139—159
 Sciatic nerve(s) of cat      149 150 157
 Sciatic nerve(s) of frog      1 2 74 142—143 149 150
 Sciatic nerve(s) of rabbit      6 7 139
 Sciatic nerve(s) ofother vertebrates      152 157 158
 Sears, T.A.      158
 Senden, Marius von      258 262
 Separation of variables      134 325
 Sherrington, Charles Scott      8 11 257 311
 Shooting method      82 101—102 111
 Shot noise      40
 Sigma-Pi model of dendrites      214—215
 Sigmoid umction      214 245—246 249 267
 Silberstein, P.T.      90
 Single neuron recording      257
 Skou, Jens Christian      64
 Smith, B.H.      44 45
 Smith, Dean      218 219
 Sneyd, James      199
 Soap bubble      49 50—51
 Soap bubble film      50—51 65
 Soap bubble film black      51
 Social assemblies      17 261 274
 Social assemblies time      310
 Sodium channels conductance      36 61—62 64 72—75
 Sodium channels current      61—62 70 71
 Sodium channels “turn-on” and “turn-off”      72 76 95—96 105 110 154 319—320
 Sodium channels, genetic variations of      153
 Sodium-potassium pump      63—64 65
 solder      243—244
 Soliton(s)      80 248
 Southampton — Duke Morphological Archive      188 189 220
 Soviet Union      5 10 207
 Space clamp(ed)      67 68 69 71 91 249 269
 Space clamp(ed) squid membrane      71—72 74—77
 Space constant      190 191
 Space constant active      224
 Speed of impulse propagation, myelinated nerve      1 2 7 142 145—147 149 158
 Speed of impulse propagation, smooth nerve      3 83 84 97—98 121
 Spike response model      42 116
 Spin-glass brain model      234 248 252
 Spira, M.E.      219
 Spreading resistance      40
 Spruston, Nelson      45
 Squid giant axon      3 4 6—7 27 32 40
 Squid giant axon branching GR for      218
 Squid giant axon H-H model of      9 77—78 83—84 120
 Squid giant axon membrane currents      69 70—74
 Squid giant axon membrane currents oscillatory behavior of      90—91
 Squid giant axon membrane currents permeabilities      63 70—74
 Squid giant axon nerve impulse, stability      83—84 86
 Squid giant axon, impulse speed for      83 97—98
 Squid giant axon, refractory zones of      87—89
 Stability      14 323—330
 Stability Lyapunov      246
 Stability of attractor neural network      245
 Stability of attractor neural network M-C impulses      121
 Stability of attractor neural network, axonal impulses      323—330
 Stability of attractor neural network, cell assemblies      268 272 273—274
 Stability of attractor neural network, F-N impulses      132—136
 Stability of attractor neural network, H-H impulse      83 84
 Stability of attractor neural network, leading edges      108—109
 Stampfli, R.      158
 State diagrams      241—242
 Statistical models of neural nets      18
 Statistical models of neurons      222
 Stimulus-response problems      321
 Stochastic behavior of synapses      38
 Stuart, Greg      45
 Studies of Artificial Neural Systems (SANS)      278 284
 Subjective experience      311
 Subthreshold resonance      91
 Superposition theorem      193
 Supervenience      295 296
 Synapses      8 10 27 248
 Synapses active and passive      215—216
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |