Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Churchland P.S., Sejnowski T.J. — The computational brain
Churchland P.S., Sejnowski T.J. — The computational brain



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The computational brain

Àâòîðû: Churchland P.S., Sejnowski T.J.

Àííîòàöèÿ:

The Computational Brain is the first unified and broadly accessible book to bring together computational concepts and behavioral data within a neurobiological framework. Churchland and Sejnowski address the foundational ideas of the emerging field of computational neuroscience, examine a diverse range of neural network models, and consider future directions of the field.


ßçûê: en

Ðóáðèêà: Áèîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1992

Êîëè÷åñòâî ñòðàíèö: 544

Äîáàâëåíà â êàòàëîã: 04.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Movement coding, by vector averaging      235—237
Moving-edge-detector      183
Multidimensional representing      163
Multiple-speaker vowel recognition problem      126f 130
Muscle cells, brain control of      331
Near cells      207
Nearest-neighbor configuration      76
Nearness      208
Necker cube      145
Nervous systems      see also “Brain; Central nervous system; specific areas of ability of to cope with novelty” 139
Nervous systems anatomical and physiological techniques in      427—443
Nervous systems as physical devices      67—68
Nervous systems computation in      7—9 10
Nervous systems development of      307—316
Nervous systems dynamic nature of      427
Nervous systems effect of evolutionary history on      147
Nervous systems energy consumption for computation in      9
Nervous systems global effect of local change in      377—378
Nervous systems groundbreaking discoveries in science of      3—4
Nervous systems imaging techniques for      432—437
Nervous systems knowledge of micro-organization of      430
Nervous systems layers and columns of      35—37
Nervous systems levels of      18
Nervous systems levels of analysis      18—19
Nervous systems levels of organization      11f 19—21
Nervous systems levels of processing      23—27
Nervous systems local networks in      37—40
Nervous systems materials of construction for computational strategies in      9—10
Nervous systems memory storage in      317—318
Nervous systems methods of communication of with hormonal system      59f
Nervous systems model for decision-making in insect      24f
Nervous systems noncognitive functions of      8
Nervous systems number of neurons and synapses in      51
Nervous systems of leech      341
Nervous systems organization levels, structure at      20f 27—48
Nervous systems oxygen and nutrient supply for      9—10
Nervous systems physical mechanisms in      239—240
Nervous systems physics of      416
Nervous systems protein and lipid supply of      9—10
Nervous systems range of tasks performed by      316—317
Nervous systems reciprocal connections in      317
Nervous systems reflexes in      411
Nervous systems spatial factors limiting computational strategies in      9
Nervous systems specialization of function in regions of      50—51 50f
Nervous systems speed of computational strategies of      8—9
Nervous systems time-management problem of      380
NETtalk architecture of      118—119f
NETtalk in analysis of hidden units      115
NETtalk input to      115
NETtalk mapping of graphemes onto phonemes in      324
NETtalk vowel representation in      173—174
networks      see also “specific network models and adaptive interactions” 6 239
Networks (cont) binary threshold units of      87
Networks (cont) connection strengths in      187
Networks (cont) convergence of to stable local minima      89
Networks (cont) definition of      77
Networks (cont) dynamics of      4
Networks (cont) higher-order      124
Networks (cont) Hopfield      85—87
Networks (cont) in complex effects      4
Networks (cont) increasing capacity of      79—82
Networks (cont) intrinsic temporal structure of      120—121
Networks (cont) learning in      96—102
Networks (cont) learning to cluster related information      128—129
Networks (cont) local      37—40
Networks (cont) mathematical tasks of      78
Networks (cont) models      12—13
Networks (cont) models computer      39—40
Networks (cont) models modification of to improve scalability of      125—127
Networks (cont) models problem-solving capacity of      125
Networks (cont) models realistic and simplifying      136—137
Networks (cont) modules and      316—329
Networks (cont) optimal rate of cooling of      92
Networks (cont) recurrent      115—125
Networks (cont) relation of models to real world      125—130
Networks (cont) relaxation of      90—91
Networks (cont) research at level of      12—13
Networks (cont) rhythmic output of      4—5
Networks (cont) running of      85
Networks (cont) teacher as adjunct to      102
Networks (cont) time considerations in      138
Networks (cont) trained-up      362—363
Networks (cont) types of      77f
Networks (cont) use-dependent modification of      296
Networks (cont) visual input to      95—96
Neural circuits, leech      341
Neural operations, and computations they help perform      45f
Neural systems, principles of organization of      413
Neurochemicals, release of      44—46
Neuromodeling constituencies of      13—14
Neuromodeling rationale for      13 14—16
Neuromodulators, synthesis, transport, and storage of      49f
Neuron membranes NMDA receptor-induced oscillations of in lamprey      410f
Neuron membranes with voltage-dependent calcium ion channels      270—271
Neuron-neuron connectivity      1
Neuronal networks      see “Networks”
Neurons      1
Neurons activity-dependent modification of      293—294 296f
Neurons and circuits      281—289
Neurons computation in      68
Neurons connectivity of      250
Neurons crossed commissural, unilateral excitation of      389—392
Neurons dependence of macro effects on      3
Neurons differences in intrinsic firing patterns of      53f
Neurons difficulty in identifying learning-dependent changes in      254—255
Neurons directionally selective, response of      25—27
Neurons disparity sensitivity profiles of      202—203f
Neurons electrical nature of      3
Neurons electrical signaling in      48
Neurons electrophysiological and anatomical features of      4—5
Neurons function of      27
Neurons hierarchical organization in      181
Neurons in nervous system processing      40—44
Neurons in superior temporal sulcus      180—181f
Neurons inhibitory and excitatory synapses on      43f 44
Neurons interaction of      415
Neurons laminar organization of      3 5
Neurons magnetic currents in      440
Neurons major types of processing of      302f
Neurons mathematical models and computer simulations of      13
Neurons mechanism for signals passing between      42
Neurons mechanisms of plasticity in      254—281
Neurons membrane of      47—48
Neurons modeling of for sensorimotor integration      399—411
Neurons models of in lamprey spinal cord      403
Neurons mutual inhibition in      37
Neurons number of in human nervous system      51
Neurons open- and closed-eye      316
Neurons origin, differentiation, and migration of types of      308f
Neurons pathway segregation of      179
Neurons principal types of in cerebral cortex      36f
Neurons recent discoveries about      4
Neurons response patterns in      160—161 441—442
Neurons response patterns in with antagonist direction-selective surround      58f
Neurons search for loci of plasticity in      259—260
Neurons single-unit technique to study response of      39 41f 440—442
Neurons sources of widely projecting      57 58f
Neurons task-dependent effects on visual responses of      328f 326—327
Neurons tuning selectivity of      178—184
Neurons types of      42—43
Neurons variety of shapes of in different areas of brain      42f
Neuroscience as data rich, but theory poor      16
Neuroscience benefits of learning procedures to      130—135
Neuroscience ethical questions in      425—426
Neuroscience overview of      17—59
Neuroscience recent progress in      4
Neurotransmitter and synaptic potential      59
Neurotransmitter in neuronal plasticity      260
Neurotransmitter inhibitory      431
Neurotransmitter receptors, mediating interneuron signaling      48
Neurotransmitter release of      48
Neurotransmitter synthesis, transport, and storage of      49f
Nissl stain      442
NMDA cascade      273
NMDA channel, voltage-dependent      407
NMDA pores, closing of      407
NMDA receptor-induced membrane potential oscillations      410f
NMDA receptor-ionophore complex      260
NMDA receptors activation of      276
NMDA receptors as conjunction detector      263
NMDA receptors blocking of      431
NMDA receptors in generation of      265
NMDA receptors in lamprey half-center circuit      398
NMDA receptors in long-term potentiations      272—273
NMDA receptors in theta rhythm generation      267
NMDA receptors in timing of rhythmic behavior      403
NMDA receptors ion channel complex of      261f
NMDA receptors location of in brain      274
NMDA receptors temporal properties of      261
NMDA receptors time course of voltage current in      275f
NMDA receptors voltage dependence of      260 274
NMDA, inducing rhythmic firing in lamprey spinal cord      403
Noise in coarse stereopsis      203
Noise reduction of in Fusion — Net output      213—215
Noise reduction of in Marr — Poggio model      211—212
Nonlinear feedback network      84f
Nonlinear functions      62—65
Nonlinear functions squashing      109—111
Nonlinear thresholds      81—82
Norepinephrine, in neuronal plasticity      260
Novelty, ability to cope with      139
Nucleus basalis, projecting neurons originating in      57
Nucleus laminaris innervation of      419f
Nucleus laminaris, of barn owls      417
Nucleus magnocellularis, barn owl      419f
NXOR network      208—209
Nystagmus, spontaneous      363 365
Object continuity constraint      82—83
Object discrimination, specialization of region of nervous system for      50f
Occipital-temporal border region, bilateral lesions in      319
Occlusion      189 195 198
Ocular dominance computer-enhanced visualization of columns      437f
Ocular dominance emergence of      310—313
Ocular dominance oscillations      316
Ocular dominance patches      197 307—309
Ocular dominance patches characteristic patterns of      310
Ocular dominance patterns of      314—315f
Ocular dominance visualization of      436
Oculomotor muscles      356
Oculomotor system      356
Oculomotor system backpropagation as tool in understanding      378
Oculomotor system visual feedback to      357
Odors, spatial organization of      34
Ojemann, George      130
Olfactory system, topographic mapping of      33—34
Operant conditioning      240
Optical dyes      428f
Optical dyes in noninvasive membrane potential monitoring      436—439
Optimization procedure      131
Organization levels      19—21
Organization levels structure at      27—48
Oscillating circuits, spinal cord      382—388
Output vector      78 81
Output vector components of      79
Overfitting      105f
Panum's fusional area      191—192 202
Parafoveal regions      148
Parahippocampal cortex, bilateral damage to      282
Parallel distributed processing (PDP)      6
Parallel search      74
Parameter-adjusting procedures      130—131 134—135
Parameter-adjusting procedures at evolutionary level      133
Parvo cells      148
Parvo pathway      15 3—155
Patch recording      428
Pathway segregation      179
Pattern completion, in Hopfield network      90f
Pattern recognition      188
Perception      see also “specific types active” 418—423
Perception brain contribution to      144—147
Perception developmental studies in      145
Perception interactivity of      220
Perspectival effects      188—189
Pharmacological agents, selective interference of      430—431
Phase space      see “State space”
Phencyclidine (PCP), effect of on NMDA receptor      263
Phosphorus mapping      432—434
Photoreceptors      148 223
Photoreceptors and functions      62—65
Photoreceptors color coding mechanism at      166f
Photoreceptors dynamics of      85—86
Photoreceptors mapping between domain and range with      63
Photoreceptors width of      226
Physical implementation level      18
Physical state transitions      67
Physical systems computing in      65
Physiological levels      20
Physiological techniques      427
Place-coding      155 157
Plasticity      15 239—329
Plasticity at behavioral level      240
Plasticity categories of neuroscientific research on      240—241
Plasticity cellular mechanisms mediating      241 243
Plasticity conditions for induction of      254f
Plasticity during development of nervous systems      307—316
Plasticity in vestibulo-ocular reflex (VOR)      365—378
Plasticity memory and mechanisms of in neurons      254—281
Plasticity synaptic      250—254
Population-coding strategy      234—237
Positron emission tomography (PET)      428f 429 434
Positron emission tomography (PET) blood volume change measurement by      435
Positron emission tomography (PET) current spatial resolution of      435
Positron emission tomography (PET) in investigating localization of higher functions      435—436
Positron emission tomography (PET) modification in      248—250
Post-tetanic potentiation (PTP)      176 304—305
Postsaccadic activity      302f
Postsynaptic cells depolarization of      253
Postsynaptic structures, to receive neurochemicals      44—46
Potassium channels controlling voltage across      403
Potassium channels simulation in pyramidal neuron      404—405f
Potassium currents, during action potential in squid giant axon      400f
Potassium, hyperpolarization by      410
Premotor cortex, electrophysiological properties of cells in      27
Pressure-sensitive mechanoreceptors      342
Presynaptic cells, modification of      253—254
Presynaptic structures, release of neurochemicals by      44—46
Primary somatic sensory cortex, multiple representations of body surface in      33f
Principal component analysis      99—100
Principal component analysis feedforward, unsupervised networks performing      100f
Principal curvatures      183 184f
Principal curvatures extracting information about      185
Processing duration of      177
Processing levels of      23—27
Processor-processed gradations      177
Projective fields      186
Prototypes, storage of      76
Psychological life      1
Psychological processes, as brain processes      1—2
Psychophysical disparity discrimination curve      227f
Psychophysically dissectable capacities neurally close models of      13
Purkinje cells action potentials of      368
Purkinje cells behavior of      409f
Purkinje cells computer models of      402 408f 409f
Purkinje cells indirect visual inputs from      372
Purkinje cells morphology of in rat cerebellum      406—407f
Purkinje cells production of      307
Pursuit system      366
Pyramidal cells      36f
Pyramidal cells CA1 region      260—263
Pyramidal cells CA3 region      355—357
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå