Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Churchland P.S., Sejnowski T.J. — The computational brain
Churchland P.S., Sejnowski T.J. — The computational brain



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The computational brain

Àâòîðû: Churchland P.S., Sejnowski T.J.

Àííîòàöèÿ:

The Computational Brain is the first unified and broadly accessible book to bring together computational concepts and behavioral data within a neurobiological framework. Churchland and Sejnowski address the foundational ideas of the emerging field of computational neuroscience, examine a diverse range of neural network models, and consider future directions of the field.


ßçûê: en

Ðóáðèêà: Áèîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1992

Êîëè÷åñòâî ñòðàíèö: 544

Äîáàâëåíà â êàòàëîã: 04.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Hippocampus two-stage hypothesis for memory storage in      269f
Hippocampus uncertainty about function of      250
Hodgkin — Huxley model      399—401
Home-net      132
Hopfield network computation with      92
Hopfield network dynamics of      88—89f
Hopfield network energy of      87—88
Hopfield network examples of pattern completion by      90f
Hopfield network global optimization in      89
Hopfield network learning rule in      98
Hopfield network output in      91f
Hopfield network units of      87
Hopfleld, John, feedback networks of      85—87
Hormonal system, methods of communication of with nervous system      55f
Horopter      192f
Horseradish peroxidase (HRP)      442
Hubel, David      223
Hues, discriminable      223
Hydrogen mapping      432
Hyperacuity      178—179 199
Hyperacuity discovery of mechanism of      221—233
Hyperacuity in depth perception      226—231
Hyperacuity vernier-style      224—226
Hypothalamus, projecting neurons originating in mamillary region of      57
Image motion      369
Image velocity, visual feedback of      372—373
Image-matching, yielding coarse stereopsis      202—209
Image-stabilization, VOR in      353—354
Imaging techniques      432—437
Implementation, levels of      19
Inclusive "or" (OR)      108—109
Incomplete outline figure      96f
Independence, doctrine of      18—19
Indexical representations      422
Information clustering      128—129
Information clustering unsupervised      129
Information encoding methods      164
Information processing hierarchy, and response patterns of neurons      160—161
Inhibitory connections      81
Inhibitory postsynaptic potentials (IPSPs)      20
Input linear transformation of      78
Input vectors      78—79 80
Integral membrane protein      47—48
Interaural delay      417
Interneurons connectivity of      410
Interneurons input and output connection strengths in leech and computer model      348f
Interneurons lateral      390f 392 410
Interneurons local bending      343f
Interneurons local bending types of      343—344
Interneurons multifunction      349 352
Interneurons recorded activity of      349
Intersegmental coupling signals      397—398
Intertemporal regions      322f
Intuition dissonance      2
ion channels      47 48
Ion channels voltage-dependent in cortical pyramidal neuron      404—405f
Ion channels working hypothesis for      47f
Ion concentration, monitoring intracellular changes in      437
Ion movement      20
Ionic conductance interactions      399
Ionic currents, in electrical signaling      48
Ionic pumps      48
Ising model, annealing and mean field approximation in      86f
Iterative curve fitting      106
Jordan network recirculating types of memory in      124
Jordan network recurrent      121f
Jordan network task for      122—123
Jordan network training up of      123—124
Julesz stereograms      193
Julesz stereograms fusion of      212—213
Julesz, Bela      193
K-Q receptors      260—263 274
Kainate receptors      260
Kaniza shapes      218 219f 441
Knee-jerk reflex      29 411
Knee-jerk reflex physiology of      344
Koppell analysis      410
Lagged cells      274
Laminae      35
Laminae diagram of      36f
Laminae organization of      35
Landmark discrimination, specialization of region of nervous system for      50f
Lateral afferents of      316
Lateral axons of activity-dependent competition in      310
Lateral axons of and ocular dominance      311
Lateral connections of with striate cortex and extrastriate visual areas      151—153f
Lateral correlation functions representing      312—315
Lateral for left and right eye      315—316
Lateral geniculate nucleus (LGN)      148
Lateral in smooth pursuit system      29
Lateral input cells of      311
Lateral interneurons and hippocampus      243—250
Lateral interneurons and long-term potentiation      255—264
Lateral interneurons behavioral studies on      240
Lateral interneurons benefits of procedures to neuroscience      130—135
Lateral interneurons competitive      102—105
Lateral interneurons connection of to CC interneurons      410
Lateral interneurons definition of      316
Lateral interneurons in neural nets      96—102
Lateral interneurons in segmental swimming model      390f 392
Lateral interneurons internalized      97
Lateral interneurons locating sites of plasticity underlying      350—351
Lateral interneurons locus of      371—372 376
Lateral interneurons oculomotor system in      356
Lateral interneurons supervised      96—97 98
Lateral interneurons taxonomy of procedures of      98f
Lateral interneurons unsupervised      96—97
Lateral interneurons unsupervised of stereo invariants      215—216
Lateral interneurons with miniaturizing lenses      373—375
Lateral projections from      149—153
Lateral reciprocal connections of      31
Learning algorithms of for automated weight-setting      96—97
Learning rule, in three-step cycle      101—102
Least squares method      105
LeechNet      341—344
LeechNet compared with VOR model nets      378
LeechNet computer models of for dorsal bending      345—353
Lehky — Sejnowsky model, disparity discrimination curve in      230—231
Leibniz, G.W.      2
Lesions animal models of      429—430
Lesions human studies of      427—429
Lesions permanent      430
Lesions reversible      430—432
Levels, theory of      18
Lexical retrieval operations, cortices related to      322f
Light Linear associators feedforward topology of      84
Light power spectrum of distributions      224f
Light response of complex cells to      156—157f
Light wavelengths, relative absorption of      222f
Linear algebra      65
Linear associators      77—82
Linear functions      62—65
Linear transformation      78
Lisberger — Sejnowski eye tracking models      369—371
Lisberger — Sejnowski eye tracking models usefulness of      378
Local bending reflex      see also “Bending reflex; Dorsal bending reflex” 342
Local bending reflex circuit for in leech      345f 347f
Local bending reflex computational model for      341
Local bending reflex interneurons for in leech      343f
Local bending reflex neural mechanisms of      342—343
Local bending reflex sensorimotor coordination of in leech      341—353
Local coding      161—162 164f
Local coding and tuning selectivity of neurons      179—184
Local coding criticism of      163
Local coding main appeal of      162
Local coding theoretical virtues of      162—163
Local coding vs distribution representation      163—164
local networks      37—40
Lockery's bending reflex model      15
Locomotion in spinalized animal      385—387
Locomotion producing EPSPs and IPSPs      398
Locomotion rhythmic      382
Locomotion sensory independence of sustained      385
Locus coeruleus, projecting neurons originating in      57 58f
Long-term depression (LTD)      290—295
Long-term depression and activity-dependent cell modification      294
Long-term depression heterosynaptic      290—291 295
Long-term depression homosynaptic      290—293 295
Long-term depression Singer's window for      316
Long-term memory (LTM)      29 282
Long-term memory processes of      297—299
Long-term potentiation "chocolate"      272—273
Long-term potentiation (LTP)      176—177
Long-term potentiation (LTP) (cont) "vanilla"      271—274 279 304
Long-term potentiation (LTP) (cont) non-Hebbian      273—274
Long-term potentiation (LTP) (cont) possible pre- and postsynaptic changes responsible for      279—280f
Long-term potentiation (LTP) (cont) tetanic stimulus producing      265
Long-term potentiation (LTP) (cont) time course of in EPSPs      272f
Long-term potentiation (LTP) (cont) varieties of      281f
Long-term potentiation and cell populations      264—270
Long-term potentiation and long-term depression      289—295
Long-term potentiation behavioral studies of      291
Long-term potentiation escape latency and strength of      260
Long-term potentiation extrasynaptic and non-NMDA      278—281
Long-term potentiation features of stimulus      265
Long-term potentiation in learning and neuronal plasticity      255—264
Long-term potentiation in learning and neuronal plasticity at behavioral level      257 259
Long-term potentiation in learning and neuronal plasticity at molecular level      259—260 274—278
Long-term potentiation induction of      221
Long-term potentiation input specificity of      255
Long-term potentiation maintenance of      261—263
Long-term potentiation NMDA-mediated      291
Long-term potentiation-NMDA-learning triad      263—264
Look-up table      69—76
Look-up table building of      70—72
Look-up table practicality of      72
Look-up table size of      74
Look-up table smart      138
Mach bands      188
Maclean, Paul, four Fs of      331
Macro-columns      318
Magnetic recordings      438—440
Magnetic resonance imaging      429 432 433f
Magnetic resonance imaging mapping of elements with      432—434
Magnetic resonance imaging to identify brain lesions      246
Magnetoencephalography (MEG)      428f 440
Magnetometers, superconducting      440
Magno cells      148—149
Magno pathway      153—155
Maladaptive structures, weeding out of      69
Mammalian visual system      148—157
Manipulation, evolutionary specializations of      10
Mapping between domain and range      63f
Mapping from input to output      78—80
Marr — Poggio cooperative network      210—215
Marr — Poggio cooperative network improving screen-door performance of      212—213
Marr — Poggio cooperative network power of      213
Marr — Poggio cooperative network three-dimensional schema of      211f
Matching function      see “Compatibility function”
Materialism      2
Mathematical interlude      65
Mathematical models      13
Matrix plus squashing function      168
Maunsell, John      326—327
Mead analog VLSI of      416—418
Mead on time      120
Mead, Carver      416
Mean field approximation      91—92
Mean field approximation in Ising model      86f
Membrane-bound proteins, integral      47—48
Membranes, and integrity of neurons and synapses      47—48
Memory      see also “Learning; Long-term memory; Short-term memory”
Memory and mechanisms of neuronal plasticity      254—279
Memory and temporal lobe lesions      246—250
Memory anterograde and retrograde      243
Memory classification of      244f
Memory declarative vs procedural      327
Memory episodic vs. semantic      327
Memory hippocampal storage of      269f
Memory local-global problem in      239—240
Memory long-term      297—299
Memory long-term and forgetting      284
Memory long-term structures involved in      29
Memory loss of with temporal lobe lesions      244—246
Memory performance of in normal, amnesiac, and patient with short-term memory deficit      298f
Memory phenomena of      246
Memory recirculating      124
Memory short-term      122—123 295—297 301—304
Memory short-term hippocampus in      282—283
Memory storage of      282—283 317—318
Memory types of      240
Memory working      299—304
Microlesions      430—432
Microstimulation trials, temporal sequence of events during      28f
Miles — Lisberger hypothesis      372
Miles — Lisberger hypothesis pattern of modifications predicted by      375
Miles — Lisberger hypothesis value of      376
Miller — Stryker model      312—316
Miller — Stryker model major elements of      313f
Miller — Stryker model ocular dominance patterns of      314—315f
Mine-rock network      113f 115—117
Mini-columns      318
Mini-networks      129—130
Mini-networks with gating network      130f
Miniaturizing lenses      371
Miniaturizing lenses effect of on VOR      373—375
Mitochondria, as source of energy supply      9
Mobots      416 423—425
Mobots as testbed for network hypotheses      424—425
Mobots complexity of      423—424
Mobots decision making by      423—424
Mobots repertoires of      423
Modeling computer in      6—8
Modeling exhibiting accessibility features      12—13
Modeling falsifying of      6
Modeling neurally close      1 3
Modeling rationale for      5—6
Modeling realistic vs simplifying      136—137
Modularity, and deficit selectivity      324—325
Modules and networks      316—329
Modules definition of      318
Modules in neuroanatomy and neurophysiology      318
Molecules, and integrity of neurons and synapses      44—48
Monitored learning      97
Monochromatic lights, wavelengths of      223
Monoclonal antibodies      431
Monocular deprivation abnormal patterns associated with      315—316
Monocular deprivation effects of during critical period of development      310
Monosynaptic reflex      29
Motion capture      188
Motion parallax      188 189 195 197f
Motion parallax depth cues of      422
Motion stimuli, measurement of behavioral reaction to      25—27
Motor activity, study of      435
Motor answers, look-up of      74
Motor cortex electrophysiological properties of cells in      27
Motor cortex single-cell research in      160
Motor learning in VOR      366f
Motor learning locus of      371—372
Motor neurons contribution of in local dorsal bending      349
Motor neurons excitatory and inhibitory      345f
Motor neurons in control of muscles      385
Motor neurons location of various electrical events on      44f
Motor neurons production of      307
Motor repertoire      331—332
Motor repertoire of leech      341
Motor state space      337
Motor state space position in      334f
Motor state space transformations of visual space coordinates in      333—336
Motor systems, topographic maps of      31—34
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå