Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Churchland P.S., Sejnowski T.J. — The computational brain
Churchland P.S., Sejnowski T.J. — The computational brain



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The computational brain

Àâòîðû: Churchland P.S., Sejnowski T.J.

Àííîòàöèÿ:

The Computational Brain is the first unified and broadly accessible book to bring together computational concepts and behavioral data within a neurobiological framework. Churchland and Sejnowski address the foundational ideas of the emerging field of computational neuroscience, examine a diverse range of neural network models, and consider future directions of the field.


ßçûê: en

Ðóáðèêà: Áèîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1992

Êîëè÷åñòâî ñòðàíèö: 544

Äîáàâëåíà â êàòàëîã: 04.12.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"Mind of the Mnemonist, The"      295
"Push-splash" phenomenon      344
2-Deoxyglucose technique      428f 434—435
6-Hydroxydopamine      430
Absolute depth discrimination, vergence and      231—233
Abstract problem analysis      18
accessibility features      13
Action potentials      20
Action potentials duration and transmission velocity of      52
Action potentials mathematical analysis of in squid giant axon      399—401
Activation modification of and time      174—183
Activation prototypical      177
Activation space and weight space      168—170 175—176
Activation space partitioning of      323—324
Activation vectors, unique      320
Active perception      418—423
Activity vector, three-element      234
Adaptation, oculomotor system in      356
Adaptive interactions      239
After-hyperpolarization (AHP), extension of      176
Algorithm, discovery of      19
Algorithmic level      18 20—21
Amacrine cells, production of      307
Amino acids, radioactively labeled      442—443
Amino-phosphonobutyric acid (APB)      431
Amino-phosphonovaleric acid (APV)      431
Amnesia, temporal lobe      244—248
Amnesic patients guessing in      246
Amnesic short-term memory performance in      298f
Amnesic studies of      243 297—299
AMPA receptors, in lamprey half-center circuit      398
Analog VLSI      416—418
Analysis, levels of      18—19
Anastasio's dynamical model      363 365
Anastasio's dynamical model network architecture of      364f
Anatomical techniques      427
Anatomical tract tracing      442—443
Anatomy, link of with representations of      23
Animal brain function models      429—430
Animate vision, vs fixed camera vision      422f
Annealing dynamics of      89
Annealing in Ising model      86f
Answer, looking up      69—76
AP5 blocking learning by      257—259 263—264
AP5 blocking of LTP by      272—273
Arbor function      312
Arm, sensorimotor coordination for      332f
Artificial neural structures      416
Artificial neural structures construction of      416—418
Associative memory, tasks of      300f
Associative networks      see also “Feedforward networks” 78—82 107
Associative networks and hippocampal anatomy      284—285
Associative stimulus paradigms      292—293f
Aubrey holes system      66—67
Auditory chips      417 418
Auditory cortex, topographic mapping of      34
Auditory object localization      417—418
Auditory space, neural map of in barn owl      420f
Auditory system in barn owl      155 417—421
Auditory system research on      237
Augmented finite state machine (AFSM)      425f
Autoassociative content-addressable memory      80
Autoassociative network      81
Autopsy      429
Axon projections, anatomical tracing techniques for      441f
Axons, tracing of      442—443
Axoplasmic transport      442—443
Backpropagation algorithm      109—111
Backpropagation as high-fidelity design tool      347—349
Backpropagation evolution of      359
Backpropagation for global network      377
Backpropagation for understanding oculomotor system      378
Backpropagation generalizations of      123
Backpropagation of enor      112—113
Backpropagation role of in training up network      362—363 375—376
Ballard, Dana active perception and      418—423
Ballard, Dana integration of perception and motor control      416
Barn owl auditory object localization by      417—418
Barn owl auditory pathway of      418f
Barn owl innervation of nucleus laminaris in      419f
Barn owl neural map of auditory space in      420f
Barn owl silicon model of time-coding pathway of      421f
Basal ganglia, organization of      35
Basket cells      36f
Basket cells effects of on synapse      52
Behavior response, measurement of accuracy of      24—25
Behavioral plasticity      240
Bending reflex      see also “Local bending reflex”
Bending reflex Lockery's modeling of      15
Bending reflex model of in leech      13
Berger, Hans      437
Binary threshold rule, in Hopfield network      90
Binary threshold units      87
Binocular fusion      208—209
Binocular perception      189 218
Binocular perception depth      147 317
Binocular perception depth development of      145
Biological structure, function of      69
Biophysical mechanisms, and computations they help perform      45f
Blood flow monitoring      436
Body physics of      415—416
Body surface maps of in nervous system      32—34
Boltzmann distribution      100
Boltzmann distribution at equilibrium      101
Boltzmann machine      91—92
Boltzmann machine figure-ground constraint satisfaction by      96
Boltzmann machine fluctuating units of      91—92
Boltzmann machine network to solve segregation task in      93
Boltzmann machine nonlinear hidden units in      100
Boltzmann machine pattern completion by      102
Boltzmann machine schematic diagram of      101f
Boltzmann machine supervised vs unsupervised      101
Bottom-up strategy      4
Bottom-up strategy test of      5
Boundary detection, binocular      209
Brain      see also “specific areas of”
Brain computational principles of      7—11
Brain continual modification of      239
Brain contribution of to perception      144—147
Brain coronal section of      242—243f
Brain detecting functional damage to      432
Brain energy consumption for computation in      9
Brain experimental techniques for study of function of      428
Brain facts about      48—59
Brain function study techniques      428f
Brain gross recordings of      157—158
Brain highly parallel character of      59
Brain in sensorimotor integration      331—411
Brain inability of to forget      295
Brain layers and columns of      35—37
Brain lesions animal models of      429—4 30
Brain lesions human studies of      427—429
Brain lesions neurological assessments of      427—429
Brain magnetic resonance imaging sections of      433f
Brain mapping regions of specialization in      157—158
Brain maps of body surface in      32—34
Brain materials of construction for computational strategies in      9—10
Brain matrixlike architecture of structures of      286
Brain molecular composition of      431—432
Brain noninvasive mapping of structure of      432
Brain oxygen and nutrient supply for      9—10
Brain physiological levels of      20
Brain plasticity of      239—329
Brain possible research strategies for      12
Brain posterior view of      383
Brain processing of transducer signals by      144—145
Brain protein and lipid supply of      10
Brain reciprocal connections between areas of      31
Brain representation in      143 157—163
Brain spatial limitation of      9
Brain special-purpose systems of      7
Brain specific connectivity in      51
Brain stem computing motor neuron activity of nuclei of      368
Brain stem in locomotion      387
Brain stem in rhythmic behavior      409
Brain stem local learning rule that produces changes in      377f
Brain stem organization of structures of      34
Brain structural components of      1
Brain systems of      29—31
Brain temporal factors in computational strategies of      8—9
Brain topographic maps of      31—34
Brain visually mapped areas of      158—160
Brain waveform patterns      438—439
Brain weak cell-to-cell interactions in      52
Brain wide projection of neurons over      58f
Brain-brain stem connections      382
Brewster, David, retinal image studies of      189
Brooks, Rodney following of evolution      416
Brooks, Rodney mobots of      423—425
Buchanan model activity pattern of cell types in      391f
Buchanan model connecting pairs of segmental oscillator cells in      392—394
Buchanan model connectivity of segments in      398
Buchanan model coupling configurations in      394—395
Buchanan model insight into rhythm of spinal cord segments in      410
Buchanan model tests of      391f
Buzsaki two-stage learning hypothesis      287—289
CA1 pyramidal cells      261—264
CA1 pyramidal cells changes in calcium concentration in soma and apical dendrites of      271
CA1 pyramidal cells long-term modification of      267
CA1 pyramidal cells population burst of      265
CA1 pyramidal cells signal processing in      286
CA3 connectivity patterns of      280
CA3 disinhibition of pyramidal cells, potentiation of      267
CA3 generation of EPSPs by      289
CA3 neuronal network, sharp-wave population burst in      268f
CA3 pyramidal cells      255—257
CA3 signal processing in      286
CA3 synchronized bursting of      265
CABLE simulator      405f 408—409f
Calcium changes in concentration in soma and apical dendrites      271f
Calcium channels, simulation in pyramidal neuron      404—405f
Calcium immediate targets of in neurons      276f
Calcium in inducing LTP      274—276 278
Calcium modulation of regulatory functions of      277f
Calcium role of in rhythmic behavior      407
Calcium-sensitive dye      436—437
Calmodulin      278
Calmodulin active      278
Calmodulin modulation of calcium ion regulatory functions by      277f
Canonical competitive nets      215—218
Canonical net      77
Cartesian dualism hypothesis      1—2
Categorical hierarchy      321
Cells death of      307
Cells long-term potentiation and populations of      264—270
Cells synchronously firing      220—221
Cellular events, temporal schedules of      380—388
Center-surround organization, response of ganglion cells in      55f
Center-surround receptive fields      53—56
Central nervous system      see also “Brain; Nervous systems”
Central nervous system computer models of neurons in      402
Central nervous system in sensorimotor integration      338
Central nervous system of leech      338f
Central pattern generator (CPG)      382 385f
Central pattern generator (CPG) sources of modulatory input to      385f
Central rhythm generator (CRG)      387
Cerebellum, topographic mapping of      34
Cerebral cortex      see also “Brain
Cerebral cortex alteration of maps in after habitual stimulation      57f
Cerebral cortex cortices related to lexical retrieval operations in      322f
Cerebral cortex firing patterns of neurons in      53f
Cerebral cortex flattened projection of      21f
Cerebral cortex laminae and principal neuron types in      36f
Cerebral cortex major gyri and fissures of      30f 31f
Cerebral cortex medial and dorsolateral views of in owl monkey      159f
Cerebral cortex microcircuit in      39f
Cerebral hemispheres, Golgi-stained sections of      3f
Chandelier cells      31
Chandelier cells cones and perception of hues by      221—224
Chandelier cells effects of on synapse      52
Chandelier cells in hyperacuity      225—226
Chandelier cells production of      307
Channel configurations      20
Chromatolysis      442
Circuits, and cells      281—289
Circulating signals      301
Classical conditioning      240
Coarse coding definition of      178—179
Coarse stereopsis emergence of from matching      218
Coarse stereopsis marching and      202—209
Cochlea-brain stem nucleus, synthetic      417—418
Cochleas, basilar membranes of      417
Coding, by vector averaging      234—237
Colliculus look-up      74—75
Colliculus organization of in cat      75f
Color coding mechanism      166f
Color constancy      188 189 221
Color perception and reflectance properties of surfaces      441
Color perception by coarse coding      221—224
Color perception from higher-level processing      223
Color perception transducers allowing      148
Color representation, as three-element activity vector      234
Color state space      223—224
Color, as wavelength      221—223
Columnar organization      35—37
Compatibilities, computation of in coarse stereopsis      202—209
Compatibility function      201—202 210—211
Competitive learning      102—105
Competitive learning anti-Hebbian, of disparity invariants      217f
Competitive learning vector quantization by      129f
Competitive learning weaknesses of      104
Competitive unsupervised networks      215
Compressed representations      103
Computation and vestibulo-ocular reflex      353—378
Computation constraint satisfaction in      82—96
Computation definition of      61 316—317
Computation energy consumption for      9
Computation linear associators in      77—82
Computation materials of construction for      9—10
Computation overview of      61—139
Computation principles of      69
Computation principles of looking up answer      69—76
Computation time for performing      8—9
Computational models introduction of      15
Computational models of stereo vision      199—221
Computational neuroscience conceptual ideas structuring problems of      10—12
Computational neuroscience evolution of      6
Computational neuroscience neuroscience component of      17—18
Computational neuroscience purpose of      6—7
Computed tomography (CT)      432
Computer models      6
Computer models for difficult animal experiments      350
Computer models in explaining higher-level phenomena      415
Computer models input and output of      414
Computer models parameters of      414—415
Computer models pushing bounds of      413—414
Computer models simulation vs artificial performances      415—416
Computer models usefulness of      413
Computer science, levels of      18
Computer simulation for dorsal bending in leech      345—353
Computer simulation in understanding local networks      39—40
Computer simulation of neurons      13
Computer-net      133—134
Computers      65—69
Computers as physical device      66—67
Computers components of      65
Computers design of      75—76
Computers digital      68
Computers general-purpose      72
Computers manufactured vs biological      68
1 2 3 4 5 6
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå