|
 |
Àâòîðèçàöèÿ |
|
 |
Ïîèñê ïî óêàçàòåëÿì |
|
 |
|
 |
|
 |
 |
|
 |
|
Fersht A. — Structure and Mechanism in Protein Science |
|
 |
Ïðåäìåòíûé óêàçàòåëü |
Proton transfer rates 162 163
Pseudorotation 260
Pulsed quenched flow 136 567—569
Pyridoxal phosphate chemistry 62 79—82
Pyridoxal phosphate chemistry, stereoelectronic control 267
Pyridoxal phosphate chemistry, suicide inhibition 284 285
Pyruvate dehydrogenase complex 37
Pyruvate kinase 267 294
Quaternary structure 9 24
Quenched flow 136 567—569
R state 292 293
Radioactive procedures 196—198
Ramachandran diagram 1—4 18 19 524 526
Raman scattering 192
Random mechanism 120
Rapid equilibrium mechanism 120
Rapid mixing techniques 133—136
Rapid quenching techniques 135—136
Ras protein 45 315 316
Rate limiting step of metabolic pathway 308
Rayleigh scattering 192
Re 247
Recombinant DNA technology 401—419
Reductive methylation 274
Regulation of enzymes and metabolic pathways 308—315
Relaxation methods 137 138
Relaxation methods, kinetics 139—155
Relaxation time 138
Renin 486
Rennin see “Chymosin”
Repertoire selection 415—418
Reporter group 276
Resonance Raman spectra 476
Restriction endonucleases 406—408
Restriction fragment 408
Retention of stereochemical configuration 253 254
Reverse genetic s 438—442
Reverse transcriptase 38
Rhizopus-pepsin 486 490
Ribonucease T1 492 495 528 529
Ribonuclease A 9
Ribonuclease A, stereochemistry of reaction 262
Ribonucleases 490—496
Ribozyme 26
RNA polymerase, “two-metal-ion” mechanism 393
Rotational correlation time 46
RS notation 246 247
S notation 246 247
S-Adenosyl methionine 90 91
Salt bridges 304 335 337—339 344 530—532
Saturation kinetics 104
Scatchard plot 208 303
Schiff bases 77—82
Second-order transition 521
Secondary structure 9 13 14 20—23
Secondary structure, 23 24
Secondary structure, 23 24
Secondary structure, all 23
Selectivity 397
Sequence identity 33 34
Sequential mechanism 119
Sequestration of reactive intermediates 432
Serine dehydratase 284
Serine proteases 7 26—30 40—43 473—482
Serine proteases, Protein engineering of specificity 452—454 481 482
SH3 domain of -spectrin 552 586 594
Shear motion 48
Shikimate pathway 36 37
Si 247
Sigmoid binding curves 289
Single-turnover kinetics 139 146 147 219—222 242
Site-directed mutagenesis see “Mutagenesis and protein engineering”
Slater — Kirkwood equation 328
Small angle x-ray scattering 520 521
Sofa conformation 358 496 500
Sofa conformation, structure 359
Solvation energies 336 337
Solvation energies, ions 74 344 426
Specific acid or base catalysis 61
Specific heat 510 511 513 545—547
Specific heat, activation 546 548 578 579
Specific heat, transition state 578 579
Specificity 372 377—400
Specificity constant ( ) 104 105 116
Specificity constant ( ), binding energy and 350—355
Specificity constant ( ), Briggs — Haldane kinetics and 166 167 384
Specificity constant ( ), diffusion control and 106 368
Specificity constant ( ), evolution of 362—364 368
Specificity constant ( ), limits from Haldane equation 368
Specificity constant ( ), meaning of 110
Specificity constant ( ), pH dependence of 169 174—176
Specificity in protein-protein interactions 347
Specificity, competing substrates 117 377
Specificity, editing mechanisms see “Editing mechanisms”
Specificity, induced fit 372 381
Specificity, intermediates 117 381 385
Specificity, nonproductive binding 116—117 372
Specificity, strain 372 377 379 384
Specificity, versus binding 339 340
Spectrofluorimetry 192 193 195
Spectrofluorimetry, determination of ionization constants by 186
Spectrophotometry 191 192 195
Spectrophotometry, optimal absorbance for signal to noise 212—214
Spin glass theory 598
Spliceosomal protein U1A, folding kinetics 552
splicing 26
Src SH3 domain, -value analysis 594
Src SH3 domain, folding kinetics 552
Staphylococcal IgG binding protein GB1 domain 529
Staphylococcal nuclease 23 47
Statistics 209—214
Statistics, combining errors 211 212
Statistics, standard deviation 210
Statistics, standard error 210
Steady state 103
Steady state approximation 106
Steady state kinetics 103—125 173—179 199—200 216 223—231
Steady state kinetics, induced fit, nonproductive binding, strain and 114—118 372 373
Stereochemistry 245—272
Stereoelectronic control 266 267 270 271
| Stereospecificity 247—250
Stopped-flow methods 134 135 243 520 541
strain 369—374 (see also “Transition state stabilization”)
Strain, electrostatic effects on protein stability 74
Strain, equilibria on enzyme surface and 118
Strain, specificity and 372 380
Strain, versus stress 372—374
Streptococcal proteinase 482
Stress 372—374
Structure of proteins-prediction 536—537
Structure-activity relationships 58 59 85—92
Structure-activity relationships, inductive effects on substrate 86
Structure-activity relationships, structural changes of enzyme 362 420—454
Structure-activity relationships, structural changes of substrate 356—358
Substrate channeling 38
Substrate concentrations in vivo 362—368
Subtilisin 27 28 30 450—454 476
Subtilisin, prosequence 540
Subtilisin, protein engineering specificity of 452—454
Subtilisin, protein engineering surface charge and of 180 327
Subtiloloigase 453 454
Subunits 24 289—297
Subunits, construction of hetero-oligomers by protein engineering 446—449
Succinates 66 67
Suicide inhibitors 280—286
Superoxide dismutase 166
Supersecondary structure 9 20
Surface charge of protein 179—180 327
Surface plasmon resonance see “Label-free optical detection”
T state 292 293
T4 lysozyme 33 497
T4 lysozyme, helix stability of 528 529
T4 lysozyme, hydrophobic core stability of 533 544
Tanford value 544 555 578 582
Temperature jump 137 138 541
Temperature jump, protein folding 593
Terminal transferase 408 410
Ternary complex 120
Tertiary structure 22
Theorell — Chance mechanism 120
Thermodynamic cycles 125—131
Thermodynamic cycles, acid denaturation 516 517
Thermodynamic cycles, double mutant cycles 129—131 594
Thermodynamic cycles, mutant cycles 129
Thermodynamic cycles, specificity 381 383
Thermodynamic cycles, “alchemical” steps 129
Thermolysin 22 30 483—486
Thiamine pyrophosphate 62 83—84
Thiol proteases 473 482
Thionesters 478
TNfn3 domain, -value analysis 594
TNfn3 domain, folding kinetics 552
Torsion angle 16—18
Tos-L-phenylalanine chloromethyl ketone (TPCK) 278 475
Trans aldolase 79
Transit time 123—125
Transition state 47—49
Transition state analogues 49 317 356 358—361 474 495
Transition state in protein folding 556—558 573—575 578—583
Transition state stabilization 353 369 439
Transition state theory 54—61 86
Transition state theory, analysis of enzyme catalysis 349—355
Transition state theory, analysis of protein folding 545 558
Transition state theory, application to chemical catalysis 57—61
Transition state theory, application to enzyme specificity 380—383
Transition state, definition 55
Transition state, ensemble 600
Transketolase 83
Transmission coefficient 56 558
Triosephosphate isomerase 23 30 31 39 41 108 167
Tritium tracer experiments 47 257—259
Trojan horse inhibitors see “Suicide inhibitors”
Trypsin 26—30 42 43 474 476 480 482
Trypsin inhibitor (basic pancreatic) 286 575
Trypsin, specificity 28
Trypsinogen 480 481
Tryptophan synthase 35
Tunneling 97 98
Turnover number see “Catalytic constant”
TWIg18 domain, folding kinetics 552
Two-state transitions 517 518
Two-state transitions, apparent 518 547
Two-state transitions, kinetics 543—553
Tyransducin- 315—317
Tyrosyl-tRNA synthetase 51 118 242 296 297 420—450
Ubiquitin, folding kinetics 552
Ultracentrifugation 204 205
Unfolding of proteins see “Denaturation”
Uniform binding energy change 351 352
Uniform binding energy change, protein engineering and 438 439
Uracil glycosidase 394
V system 294
Valyl-tRNA synthetase 239—242 379 386 389
Van der Waals contact distance 328
Van der Waals energies 329 331
Van der Waals forces 327—329
Van der Waals radii 328—329
Vanadate 495
Van’t Hoff enthalpy 512 513 517
Van’t Hoff equation 513
Vector 411 412
Walker consensus sequence 316 320
Warwicker — Watson algorithm 326
Watson — Crick base pairing 401—403
X-ray diffraction methods 4—7
X-ray diffraction methods, difference Fourier 39
X-ray diffraction methods, isomorphous replacement 4 5
X-ray diffraction methods, molecular replacement 6 39
X-ray diffraction methods, resolution 6
X-ray diffraction methods, static disorder and real motion 49 50
X-ray diffraction methods, time resolved 39
X-ray diffraction methods, von Laue method 39
Zero-point energy 96
Zinc proteases 482—486
“Effective concentration” 65—72
“Effective concentration” in general-acid-base catalysis 66
“Effective concentration” in nucleophilic catalysis 66
“Effective concentration”, entropy and 68—72
“Orbital steering” 72 73
“Ridges-into-grooves” 22
“Rollover” 550
|
|
 |
Ðåêëàìà |
 |
|
|