Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fersht A. — Structure and Mechanism in Protein Science
Fersht A. — Structure and Mechanism in Protein Science



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Structure and Mechanism in Protein Science

Àâòîð: Fersht A.

Àííîòàöèÿ:

By concentrating on fundamental principles and the physical and chemical processes behind them, Structure and Mechanism in Protein Science makes the basic formulas, Kinetics, and thermodynamics of protein engineering easier to understand and apply. Up-to-date, authoritative, and full of relevant examples, it provides a solid introduction to a sprawling, still-growing field.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1999

Êîëè÷åñòâî ñòðàíèö: 630

Äîáàâëåíà â êàòàëîã: 30.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Dehydrogenases $NAD^{+}$ linked      32 458—472
Dehydrogenases $NAD^{+}$ linked, A and B      250
Dehydrogenases $NAD^{+}$ linked, domains      32
Dehydrogenases $NAD^{+}$ linked, evolution      32
Dehydrogenases $NAD^{+}$ linked, rate determining product release      167
Dehydrogenases $NAD^{+}$ linked, stereospecificity      249 250
Denaturation of proteins      508—537
Denaturation of proteins, acid denaturation      516
Denaturation of proteins, cold unfolding      511
Denaturation of proteins, denaturants      509
Denaturation of proteins, solvent denaturation      513—517 522
Denaturation of proteins, specific heat      510—513
Denaturation of proteins, thermodynamics      509—513
Denatured state, molecular dynamics simulation      589
Denatured state, structure      518—521 578 589
Deoxynucleoside monophosphates      402
Deoxythymidine kinase      294
Detailed balance      see “Microscopic reversibility”
Deuterium tracer experiments      250 256—258
Diagonal plot      33
dielectric constant      6 73 74 160 325 326
Difference energy diagrams      427 428 431
Differential binding energy change      351 352
Differential binding energy change, protein engineering and      438 439
Differential scanning calorimetry (DSC)      207 512 513
Diffusion-collision model      575 576
Diffusion-controlled reactions      158—166
Diffusion-controlled reactions, effects of viscosity on      161
Diffusion-controlled reactions, limited by equilibria      368
Dihedral angle      16—18
Dimethylsuberimidate      276
Discrimination among substrates      377
Dispersion forces      see “Van der Waals”
Dissociation constants of acids and bases      see “Ionization constants”
Dissociation rate constants of protein-ligand complexes, determination      202—207
Dissociation rate constants of protein-ligand complexes, kinetic analysis      158 164 167
Dissociative mechanism      259
Distortion of enzyme or substrate      372—374
Distributive polymerization      410
Disulfide bridges      4 603
Disulfide bridges as probes in protein folding      574 575
Disulfide bridges, configurational entropy of loops      535
Disulfide bridges, effects on stability      534 535
Divergent evolution      26—28
DNA ligase      393 405—407
DNA ligase, blunt end ligation      407
DNA polymerases      37—38 124 404 405 408 409
DNA polymerases, editing mechanism      389—393 405
DNA polymerases, molecular mechanism of editing      392—394
DNA polymerases, mutator and antimutator mutants      391
DNA polymerases, “two-metal-ion” mechanism      392—394
DNA, cDNA      411
DNA, cloning      410—413
DNA, hybridization      413
DNA, mutagenesis      410 413—416
DNA, properties      401—404
DNA, repair      393—395
DNA, replication      404 405
DNA, restriction      406 407
DNA, RF      414
DNA, structure      401—404
DNA, Watson — Crick base pairing rules      401—404
Domain swapping      33
Domain theory of enzyme evolution      32 33
domains      20 32 33
Domains, analysis by protein engineering      445—449
Domains, folding      595
Double mutant cycles      see “Thermodynamic cycles”
Double-displacement mechanism      236 254 256 267
Double-sieve editing mechanisms      387—389 398 399
Eadie — Hofstee plot      112 114
Editing mechanisms      384—399
Editing mechanisms, cost of editing      395—399
Editing mechanisms, editing in DNA replication      389—395
Editing mechanisms, editing in protein synthesis      385—389
Ef-Tu      315 316
Elastase      26—30 40
Elastase, acylenzyme      27 40
Elastase, binding energies of subsites      356 357
Elastase, binding site      26—30
Elastase, kinetic constants for peptide hydrolysis      357
Elastase, specificity      27
Electrophiles      276
Electrophilic catalysis      61
Electrophilic catalysis, metal ions      74—77
Electrophilic catalysis, pyridoxal phosphate      79—82
Electrophilic catalysis, Schiff bases      77—82
Electrophilic catalysis, thiamine pyrophosphate      82—84
Electrostatic catalysis      61 73 74 498
Electrostatic effects on enzyme-substrate association rates      159—161
electrostatic forces      179—181 325—327
Electrostatic strain and stability      74
Enamines      76 77
Enantiomer      245
Encounter complex      159
Encounter frequency      164 166
Enediols      251 252
Energy landscapes      575 598
Energy landscapes, rough      598
Energy landscapes, smooth      598
Energy landscapes, versus pathways      600 601
Energy of activation      56 58 546 547
Ensembles      600
Enterokinase      480
Enthalpy      55
Enthalpy versus entropy in protein folding      509—512 587 599
Enthalpy, activation      56 545—547
Enthalpy, protein folding      509—512
Enthalpy, specific heat effects      511 545—547
Enthalpy-entropy compensation      346
entropy      55 68—72
Entropy, activation      56 545—547
Entropy, binding      324 345
Entropy, Boltzmann equation      510
Entropy, chelate effect      345
Entropy, configurational      510
Entropy, configurational entropy of loops      535
Entropy, effective concentration      68—72
Entropy, equilibria on enzyme surface      118
Entropy, hydrogen bond      338
Entropy, hydrophobic bond      332 510
Entropy, importance in enzyme catalysis      72
Entropy, importance in enzyme-substrate binding      72
Entropy, importance in protein folding      510
Entropy, specific heat effects      511 545—547
Entropy, transition state analogues      360
Entropy-enthalpy compensation      346
Enzyme-activated irreversible inhibitors      see “Suicide inhibitors”
Enzyme-substrate complexes      38—44
Enzyme-substrate complexes, association rate constants      143 144 152—154
Enzyme-substrate complexes, binding energies      324—347
Enzyme-substrate complexes, dissociation constants, determination of      202—207
Enzyme-substrate complexes, dissociation rate constants      153 162 167
Enzyme-substrate complexes, methods for study by x-ray diffraction      39—40
Epoxides      274 276 280
EPR      46
Equatorial      260
Equilibria on enzyme surface      see “Internal equilibria”
Equilibrium constants, apparent      109 110
Equilibrium constants, linked      127—129
Equilibrium constants, macroscopic      127—129 179
Equilibrium constants, microscopic      127—129 179
Equilibrium dialysis      202 203
Equilibrium gel filtration      203 204
Ergodic principle      589
Errors of observation      see “Statistics”
Ester hydrolysis      57 59 62—64 86—90
Evolution of enzymes      25—34
Evolution of enzymes, fine tuning      439—442
Evolution of enzymes, probing by reverse genetics and protein engineering      438—442
Evolution of maximum rate      362—364 440—442
Exon      25 26 32 33
Extein      25 26
Extinction coefficient      191 192 194
Extrathermodynamic relationships      600
Eyring equation      545
Ficin      482
Filter assays      198 205
First-order transition      521
Fischer projection formula      247
FKBP12, $\Phi$-value analysis      594
FKBP12, folding kinetics      552
Flash photolysis      136—137
Flavoproteins      285 286
flexibility      44—51
Fluorescence      46 47 192 193
Fluorescence, anisotropy      46
Fluorescence, labels      276
Fluorescence, polarization      46
Fluorescence, quenching      193
Folding funnel      598—600
Folding of proteins      see “Denaturation”
Folding of proteins, folding kinetics      541—570
Folding pathways      573—602
Folding pathways, optimization of rates      600
Folding pathways, pathways versus landscapes      600 601
Folding pathways, proteins with two-state kinetics      551—553
Folding problem      508
Foldon      577 593 596
Force fields      331
Framework model      575 576 583
Fructose 6-phosphate      252 254 309—311
Frustration      598
Fumarase      250 252 257
Furin      453
Furolisin      453
Furylacryloyl group      220 221
Fyn SH3 domain, folding kinetics      552
G proteins      315—317
Gaussian distribution      210
Gel filtration      203 204
Gene fusion      32 33 37
Gene library (bank)      412 417
General-acid-base catalysis      61—66 72 76
General-acid-base catalysis, examples with enzymes      85 310 311 466 472 484 488 490 493 494 497 498
General-acid-base catalysis, kinetically equivalent mechanisms      94—96
General-acid-base catalysis, principle of microscopic reversibility and      93 94
genetic engineering      401
Genome sequences      25
Gibbs free energy      55
Glucose 6-phosphate      279
Glucose 6-phosphate dehydrogenase      459
Glucose 6-phosphate isomerase      279
Glucosidases      see “Lysozyme”
Glutamate dehydrogenase      167
Glutamine synthetase      298
Glyceraldehyde 3—phosphate dehydrogenase      23 32 45 167 281 296 297 303 469—472
Glycerol, viscogenic effects      160
Glycerophosphate dehydrogenase      367
Glycogen phosphorylase      see “Phosphorylase”
Glycogenolysis      312—314
Glycolysis      309 310
Glycolysis, substrate concentrations in      365—367
Glycosidases      233—235 243
Golf course analogy of folding      598
Greek key      20 21
GroEL      296 604—610
Group $pK_{a}$      179
Guggenheim method      200
Haldane equation      117 118 229
Half-chair conformation      359
Half-life ($t_{1/2}$)      140
Half-of-the-sites activity      297 298 382 468 471
Half-of-the-sites activity, analysis by protein engineering      448 449
Hammond effect      57—58 375 442 582 591 599
Hammond effect, internal equilibria and      375 472
Hammond effect, protein folding      582
Hansch equation      335
Hard and soft centers      88—91 276 277
heat capacity      see “Specific heat”
Heat shock proteins      603
Heme-chemical models      307
Hemoglobin      289 304—307
Hemoglobin, allosteric interactions      289—292 302
Henderson — Hasselbalch equation      170
Heterotropic      290
Hexokinase      23 51 364
Hill constant      299 300—302 304
Hill equation      297—300
Hinge motions      48
HIV protease      486
Holoenzyme      458
Homology      8 9
Homology modeling      537
Homotropic      290
Hpr (histidine-containing phosphocarrier protein), folding kinetics      552
Hydride transfer      97 98 249 250 256 257 276 458—472
Hydrogen bond      11 13 22 24 329—331
Hydrogen bond, inventory      337—339
Hydrogen bond, low barrier      330 331 475
Hydrogen bond, specificity and      340 345 347
Hydrogen exchange kinetics      7 48 518 563—569
Hydrogen exchange kinetics, effects of mutation      566
Hydrogen exchange kinetics, EX1 limit      565
Hydrogen exchange kinetics, EX2 limit      565
Hydrogen exchange kinetics, intrinsic rate constant      565
Hydrogen exchange kinetics, protection factor      564 565
Hydrogen exchange kinetics, quenched flow      567—569
Hydrophobic bond (“effect”)      22 332—336
Hydrophobic bond (“effect”), dispersion energies      343 344
Hydrophobic bond (“effect”), hydrophobic core      532—534
Hydrophobic bond (“effect”), specific heat      510 546
Hydrophobic bond (“effect”), surface area dependence      334 335 524 525
Hydrophobic bond (“effect”), surface tension and      334
Hydrophobic collapse      575 576 596
Hydrophobic core      24 532—534
Hydrophobic zipper model      596
Hydrophobicity constant (77)      335 336
Hydroxyethylthiamine pyrophosphate      83—84
IgG binding domain of streptococcal protein L, $\Phi$-value analysis      594
IgG binding domain of streptococcal protein L, folding kinetics      552
IgG binding domain of streptococcal protein L, radius of gyration of denatured state      520 521
In-line mechanism      259
Incremental binding energy      335 339—344 435
Induced fit      295 369—371 432
Induced fit, specificity      372 381
Infrared spectroscopy      475
Infrared spectroscopy, determination of ionization constants      186
Infrared spectroscopy, resonance Raman spectra and strain      476
Inhibition of enzyme activity      112—115
Inhibition of enzyme activity, competitive      113—115
Inhibition of enzyme activity, irreversible      112 273—283
Inhibition of enzyme activity, mixed      113 114
Inhibition of enzyme activity, noncompetitive      113—115
Inhibition of enzyme activity, slow, tight binding      286 287
Inhibition of enzyme activity, uncompetitive      115
Initial rate for pre-steady state kinetics      140 142 145
Initial rate in steady state kinetics      103 104 106
Intein      25 26
Intermediates, accumulation      374 375
Intermediates, definition      55
Intermediates, detection by kinetics      216—214 547 549—551 554—556
Intermediates, detection by stereochemical criteria      253—255
Intermediates, pre-steady state kinetics      132 144—149 154—157 543 547 549—551 554—556
Intermediates, proof of on pathway      217 218 553—556 566 567
Intermediates, steady state kinetics      107 108 116 117 121—123 543 547 549—551 554—556
Intermediates, undesirability of accumulation      375 600 602
Internal equilibria      118 375
Intramolecular catalysis      65—72
Intramolecular catalysis, effective concentrations in      65—72
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå