Авторизация
Поиск по указателям
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems
Автор: Zeidler E.
Аннотация: This is the first of a five-volume exposition of the main principles of nonlinear functional analysis and
its applications to the natural sciences, economics, and numerical analysis. The presentation is self-contained and
accessible to the nonspecialist. Among the topics of Volume I are the two basic fixed-point theorems of Banach and
Schauder, calculus in Banach spaces, the implicit function theorem, Newton`s method, analytic bifurcation theory,
fixed-point theorems for multivalued mappings, nonexpansive and condensing operators, mapping degree and fixed-point
index and their applications, analytic maps, and asymptotic fixed-point theorems.
The book contains numerous applications to such areas as ordinary and partial differential equations,
integral equations, and game theory. Many exercises and a comprehensive bibliography complement the text.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1986
Количество страниц: 897
Добавлена в каталог: 22.12.2011
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Retraction,trick for constructing fixed points 51 563
Riesz - Schauder theory for compact operators 372
Riesz - Schauder theory for dual pairs 788ff
Rotation of a vector field 521
Saddle point of a dynamical system 93
Saddle point of a functional 457
Scalar product 785
Schauder fixed-point theorem 56
Schauder fixed-point theorem, generalized 500 556 624 725
Schauder fixed-point theorem, second 452
Schauder fixed-point theorem, with uniqueness 624
Selection 463
Selection theorem, finite sets (marriage theorem) 464
Selection theorem, topological spaces (Michael's selection theorem) 466
Semi-linear 804
Semi-linear differential equation see Applications to
Semi-linear operator equations 60 398
Separable B-space 770
Separable topological space 751
Separation theorem for compact sets 636
Separation theorem for convex sets see Section 39.1 in Part III
Separation theorem Jordan - Brouwer 580
Sequentially closed 759
Sequentially compact 759
Sequentially complete 762
Set 746
Set theory 745ff
Set theory, basic theorems of 489 511 749
Set, absolutely convex 764
Set, absorbing 764
Set, algebraic 646
Set, analytic 646
Set, arcwise connected 758
Set, bounded 762 768 769 780
Set, Cantor 583 758
Set, circled 764
Set, closed 751
Set, compact 756
Set, connected 757
Set, convex 764
Set, dense 751
Set, directed 759
Set, finite 749
Set, infinite 749
Set, Julia 743
Set, locally arcwise connected 758
Set, massive see Residual
Set, meager see of first Baire category
Set, nowhere dense 751
Set, of first Baire category 802
Set, of normal structure 485
Set, of second Baire category 802
Set, open 751
Set, ordered 503
Set, perfect 754
Set, relatively closed 755
Set, relatively compact 756
Set, relatively open 755
Set, residual 802
Set, sequentially closed 759 760
Set, sequentially compact 759 760
Set, simply connected 758
Set, totally disconnected 757
Set, well-ordered 503
Sheaf theory 647; see Part V
Shift operator 86
Shockwaves 113
simplex 599
Singular fixed point 184
Singular point 184
Singular value 184
Singular zero 184
Small divisor 103 220 223
smallest see Element
Sobolev space 261; see Part II
Space 800
Space, analytic 646ff
Space, arcwise connected 758
Space, Banach (B-space) 769
Space, Banach manifold 180
Space, barrelled 783
Space, bornological 783
Space, compact 756
Space, connected 757
Space, contractible 609
Space, covering 727; see Part V
Space, first countable 754
Space, fixed-point 609
Space, Fr chet (F-space) 784
Space, function spaces see List of Symbols
Space, Hausdorff see Separated
Space, Hilbert (H-space) 785
Space, invariant 158
Space, Lebesgue 111
Space, Lindel f 757
Space, linear 763
Space, linear topological see Topological space vector
Space, locally arcwise connected 758
Space, locally compact 597
Space, locally connected 757
Space, locally convex 779
Space, manifold 181
Space, metric 761
Space, metrizable 762
Space, normal 596
Space, nuclear 784; see Part V
Space, paracompact 597
Space, Polish 762
Space, regular 596
Space, second countable 754
Space, separable 751
Space, separated 754
Space, simply connected 758
Space, Sobolev 261
Space, topological 750
Space, topological vector 768
Space, totally disconnected 757
Spaces, schematic overviews of important 752 753
Spectral radius 795
Spectrum 795
Spectrum essential 497
Spectrum of compact operators 372
Splitting property 766
Stability of bifurcation solutions 386 424
Stability of biological equilibria 163
Stability of equilibrium points of dynamical systems 86
Stability of fixed points 158 160
Stability of fixed points of analytic maps 223
Stability of iterative methods 31 157 282
Stability of oscillations 91ff
Stability of periodic solutions 162 200 202
Stability of planetary system 100 125 222
Stability of positive solutions 282
Stability of solutions of elliptic equations 323 324
Stability of solutions of parabolic equations 330
Stability, notions of bifurcation solution (asymptotically stable, weakly asymptotically stable, unstable) 424
Stability, notions of equilibrium point (asymptotically stable, stable, unstable) 86
Stability, notions of fixed point ( -stable, -weakly stable, -unstable) 160
Stability, notions of fixed point (asymptotically stable, stable, unstable) 158
Stability, notions of solution of an elliptic equation (asymptotically stable, weakly stable, unstable) 323 324
Stable homotopy 717
Stable manifold 93 112
Stable set 158
Stochastic particle reactions 124
Strange attractors 164
Strategy pair in game theory 461 462
Structural stability 95 99 100 106
Structure 800
Subimmersion 178
Subimmersion theorem 178
Submersion 183
Submersion Theorem 185
Support 756
Supremum in ordered sets 503
Suspension 715
Switching circuits 96
Symmetry in nature 109
Symplectic geometry 734; see Part V
Synergetics 656
Tangent see Part IV
Tangent bundle 183
Tangent space 183
Tangential map 183 192;
Tangential map and the chain rule for higher derivatives 192
Taylor's theorem 148
Taylor's theorem, converse of 193
Theorem see also Fixed-point theorem
Theorem, Alaoglu - Bourbaki 777 782
Theorem, approximation 55 533 770
Theorem, Arzel - Ascoli 772
Theorem, Atiyah - J nich 727; see Part V
Theorem, Atiyah - Singer index 372 727;
Theorem, B zout 434
Theorem, Baire - Hausdorff 776 802
Theorem, Banach 111 779 782
Theorem, Banach - Steinhaus 111
Theorem, beer barrel 846
Theorem, Bernstein 246 251
Theorem, Bing - Nagata - Smimov metrization 597
Theorem, bipolar see Part III
Theorem, Birkhoff - Kellogg 559
Theorem, Borsuk - Ulam 708
Theorem, Borsuk antipodal 701
Theorem, Borsuk homotopy extension 698
Theorem, Bott periodicity 727
Theorem, bread-ham-cheese 710
Theorem, Brouwer - Schauder invariance of domain 705
Theorem, Brouwer fixed-point index 535
Theorem, Brouwer invariance of dimension 581
Theorem, Brouwer mapping classes 692 711
Theorem, bunch 392
Theorem, Caccioppoli 174
Theorem, closed graph 779
Theorem, closed graph, nonlinear 471
Theorem, closed range 111
Theorem, Cohen independence 748 749
Theorem, Crandall - Rabinowitz 383 426
Theorem, Cronin - Schwartz 621
Theorem, curve selection 639 647
Theorem, Dancer - Turner 669
Theorem, Eberlein- muljan 111
Theorem, embedding 233
Theorem, Euler polyhedral 727; see Part V
Theorem, extension see Extension of
Theorem, for semi-linear equations 398
Theorem, Frobenius 167 343
Theorem, G del incompleteness 749
Theorem, Gauss - Bonnet - Chern 727; see Part V
Theorem, general mean value 76
Theorem, generalized Frobenius 167
Theorem, generalized Gronwall 281
Theorem, generalized Peano 81
Theorem, generalized Picard - Lindelof 78
Theorem, generalized Taylor 148
Theorem, Grobman - Hartman 100
Theorem, Gronwall 82
Theorem, Grundmann 421ff 640
Theorem, Hadamard 174
Theorem, Hahn - Banach 776
Theorem, hard implicit function theorem (Moser - Nash) 218
Theorem, Hausdor ff
Theorem, hedgehog see Poincare - Brouwer
Theorem, Hess - Kato 347
Theorem, Hopf classification 711
Theorem, implicit function 150
Theorem, invariance of domain 705
Theorem, inverse mapping theorem, global 174
Theorem, inverse mapping theorem, local 172
Theorem, Ize 669
Theorem, Jentzsch 291
Theorem, Jordan - Brouwer separation 580
Theorem, Jordan curve 581 592
Theorem, Kantorovi 210
Theorem, Knaster- Kurato wski- M azurkiewicz 67
Theorem, Kneser - Fukuhara 567
Theorem, Krasnoselskii - Zabreiko - Steinlein mod 724
Theorem, Krasnoselskii cone expansion 562
Theorem, Krasnoselskii local bifurcation 666
Theorem, Krasnoselskii monotone minorant 286
Theorem, Krein - Milman see Section 38.7 in Part III)
Theorem, Krein - Rutman 290
Theorem, Krein - Smuljan 782
Theorem, Leray - Schauder continuation 245 556 628
Theorem, Leray - Schauder fixed-point index 542
Theorem, Leray - Schauder unbounded component 631
Theorem, Leray- Schauder index 619
Theorem, Leray-product 575
Theorem, Ljapunov center 655; see Part IV
Theorem, Ljapunov stability 87 99
Theorem, Ljusternik - Schnirelman - Borsuk 708
Theorem, Mackey - Arens see Part III
Theorem, marriage 464
Theorem, Mazur 776
Theorem, Menger - N beling embedding 594
Theorem, Michael selection 466
Theorem, Milman 475
Theorem, minimax 458
Theorem, Moser - Nash 218
Theorem, Moser twist 736
Theorem, Nagumo 122
Theorem, Nash embedding 220
Theorem, Nash equilibrium 469
Theorem, Noether 110; see Part V
Theorem, nonlinear Krein - Rutman 312
Theorem, on generic finiteness 189
Theorem, on transflnite induction 511
Theorem, open mapping 111
Theorem, open mapping, nonlinear 705
Theorem, parametrized Sard 188
Theorem, Peano 57
Theorem, Perron 291 342
Theorem, Picard - Lindel f 27
Theorem, Poincar - Alexander duality 581 727;
Theorem, Poincar - Bendixson 120
Theorem, Poincar - Bohl 571
Theorem, Poincar - Brouwer 558
Theorem, Poincar - Hopf 727; see Part V
Theorem, preimage 185
Theorem, Rabinowitz global bifurcation 668
Theorem, rank 178 195
Theorem, Riemann - Roch 727; see Part V
Theorem, Riesz compactness 111
Theorem, Riesz representation 785
Theorem, Sard 186 550
Theorem, Sard - Smale 186 550
Theorem, separation see Separation
Theorem, Siegel center 223
Theorem, Smale complexity 257
Theorem, Spectral Mapping 798
Theorem, Sturm oscillation 792
Theorem, subimmersion 178
Theorem, Submersion 185
Theorem, Sundman 125
Theorem, surjective implicit function 177
Theorem, Taylor 148
Theorem, Tietze - Dugundji 49 65 756
Theorem, Tietze - Urysohn 756
Theorem, Tihonov product 756
Theorem, uniform boundedness 111
Theorem, Urysohn metrization 596
Реклама