|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Sedgewick R. — Algorithms |
|
|
Ïðåäìåòíûé óêàçàòåëü |
2-node 188
2D (two-dimensional) trees 343 346
2—3 trees 198
2—3—4 tree 188
3-node 188
4-node 188
abacus 528
Abstract data structures 30 88 128 136
adapt (integration, adaptive quadrature) 85
add (polynomials represented with linked lists) 27
add (sparse polynomials) 28
Additive congruential generator (randomint) 38—40
Adjacency lists 378—381 382 383 391—392 410—411 435
Adjacency matrix 377—378 384 410—411 425 435 493 515
Adjacency structure see “Adjacency lists”
adjlist (graph input, adjacency lists) 379
adjmatrix (graph input, adjacency matrix) 378
Adleman, L. 301 304
Aho, A.V. 304
Algorithm machines 457—469
All-nearest-neighbors 366
All-pairs shortest paths 492 494
Analysis of Algorithms 12—16 19
Approximation algorithms 522 524 533
Arbitrary numbers 33
Arithmetic 23—30
Arrays 24
Articulation points 390—392 430
Artificial (slack) variables 503 509
Attributes 335
Average case 12—13
AVL trees 198
B-trees 228—231 237
Backtracking 517—522
Backward substitution 60 64
Backward substitution (substitute) 62
Balanced multiway merging 156—161
Balanced trees 187—199 237 355
Basis variables 504
Batcher, K.E. 463—465
Bayer, R. 228
Bentley, J.L. 370
Biconnectivity 390—392 429
Binary search 175—177 336
Binary search (binarysearch) 176
binary search trees 169 178—185 204 210 336 343—346 353 356—359
Binary search trees, array representation 184—185
Binary search trees, indirect representation 184—185 353
Binary search trees, optimal 489—492
Binary search trees, standard representation 178—179
Binary search trees, weighted internal path length 490
Binary trees 179 237
Binomial queues 167
Bipartite graphs 444—447
Bitonic merge 463—465
bits 116 118 122 214 215 221 222
Bland's method (for cycle avoidance in simplex) 509
Bland, R.G. 507
Borodin, A. 88
Bottom-up parsing 275—276
Boyer — Moore string searching 250—251
Boyer, R.S. 242 304
Branch-and-bound 519—520
Breadth-first search 395 397—398 439
Brown, M.R. 167
brutesearch (brute-force string searching) 243
bstdelete (binary search tree deletion) 185 355
bstinsert (binary search tree insertion) 184 353 355
bstrange (one-dimensional range search) 337 355
Bubblesort 99
Caesar cipher 297
Catalan numbers 487
Chi-square () test (chisquare) 41—42
ciphers 297—300
Ciphers, Caesar 297
Ciphers, product 300
Ciphers, Vernam 299
Ciphers, Vigenere 298
Ciphertext 297
Clancy, M. 19
Closest-pair problem 362—366 368
Closest-point problems 361—368 370
Closure 258 261
Clustering 207
Comer, D. 237
Compare-exchange 93 460—465
Compilers 247 269 276—279 304
Complete binary tree 130
Complete graphs 376
complex numbers 473—478
Complex roots of unity 473—477
Computational accuracy 61 63 86 504
Concatenation 258 261
Connected components 375
Connected graph 375
Connectivity 389—405 454
Conquer-and-divide 152
Constant running time 14
Constraints 498
Context-free grammars 270—272
Contextrsensitive grammars 272
Convex hull 321
Convex hull algorithms 321—333 368 370
Convex hull algorithms, divide-and-conquer 368
Convex hull algorithms, Floyd-Eddy method 331—332
Convex hull algorithms, Graham scan 326—330 332
Convex hull algorithms, Graham scan (grahamscan) 329
Convex hull algorithms, hull selection 331—332
Convex hull algorithms, package wrapping 323—326 325
Convex hull algorithms, package wrapping (wrap) 332
convex polygons 321
Convexity 321
Conway, L.C. 536
Cook's theorem (satisfiability is NP-complete) 532—533
Cook, S.A. 242 532
Cooper, D. 19
Counting 455
Cross edges 423 430
Cryptanalysis 295—296
Cryptography 295—296
Cryptology 295—302 304
Cryptosystem 296
Cryptovariables 299
Cubic running time 15
Curve fitting 67—76
CYCLE 375 384
Cycling in the simplex method 506—507 509
Dags (directed acyclic graphs) 426—428
Data fitting 67—76
Data structures, abstract 30 128 136
Data structures, adjacency lists 378—381
Data structures, adjacency matrix 377—378
Data structures, adjacency structure 378—381
Data structures, array 24
Data structures, B-tree 228—231 237
Data structures, binary search tree 178—185
Data structures, deque 263—267
Data structures, heap 129—140
Data structures, indirect binary search tree 184—185
Data structures, indirect heap 138—139
Data structures, linked list 27—28 202—203 379
Data structures, priority queue 127—140
Data structures, queue 264 395
Data structures, red-black tree 192—199
Data structures, sorted list 129
Data structures, stack 109—110 264 394 428 429
Data structures, string 241
Data structures, top-down 2—3—4 tree 187—199
Data structures, unordered list 129
Database 226 237 335
| decryption 297 301
Deletion in binary search trees 183—184
Deletion in hash tables 208
Dense graphs 376 378 397—398 411 413 415—417
densepfs (priority graph traversal) 416 439—440
Deo, N. 536
Depth-first search 371 381—387 391—395 397—399 422—423 428—430 454 515
Depth-first search forest 382 384 394 422—423
Derivation 270
Deterministic algorithm 528
dfs (recursive depth-first search) 382—385
Dictionaries 171
Diffie, W. 301
Digital search trees 213—216
Digital search trees, digitalinsert 215
Digital search trees, digitalsearch 214
Dijkstra's algorithm (for finding the shortest path) 415
Dijkstra, E.W. 410 415 454
Directed acyclic graphs (dags) 426—428
Directed cycle 428
Directed graphs 376 380 421—430
Directed path 423
Directory 233
Discrete mathematics 19
Disk searching 225—235
Distribution counting 99—101 116 122—123
Divide-and-conquer 48 51 104 152 175 362 474 477—480 483
Divide-and-conquer recurrence 51 108 149 475 363
Dot product 74
Double buffering 161
Double hashing 207—210
Double rotation 198
Down edges 423
downheap (top-down heap repair) 134
drawing lines 311
Drawing lines (draw) 310
Dual of Voronoi diagram 367—368
Dummy node see “z”
duplicate keys see “Equal keys”
Dynamic programming 483—494 536
Eddy, W.F. 331 370
Edges 374
Edges, backward 437
Edges, capacities 435
Edges, cross 423 430
Edges, down 423
Edges, forward 437
Edges, negative weight 494
Edges, up 423 430
Edmonds, J. 439—440
eliminate (forward elimination) 62
Encryption 297 301
eof 9
Equal keys 172 177 193 204 214 227—228 234
escape sequence 286
Euclid's algorithm (for finding the gcd) 10—11 19 302
Euclidean minimum spanning tree 417
Euclidean shortest path problem 418
Euclidean traveling salesman problem 522—524
eval (fast Fourier transform) 479
eval (spline evaluation) 72
Even, S. 454
Exception dictionary 210
Exhaustive graph traversal (visit) 515
Exhaustive search 513—524 536
Exponential running time 15 513 520 528 534
exponentiation 46—47 301
expression (top-down compiler) 277
expression (top-down parser) 273
Extendible hashing 231—235 237
External nodes 180 230 289 490
External searching 225—235
External sorting 155—165
factor (top-down compiler) 278
factor (top-down parser) 274
Fagin, R. 231 237
Fast Fourier Transform 465 471—480 536
Fast Fourier transform (eval) 479
fastfind (union-find with compression and balancing) 403 411
Feasible basis 509—510
file compression 283—293
File compression, Huffman encoding 286—293
File compression, run-length encoding 284—286
File compression, variable-length encoding 286—293
find 399
find (union-find, quick union) 401
findinit (fastfind initialization) 403 411
Finite-state machine, deterministic 248 259
Finite-state machine, nondeterministic 259—267
Flow 435
Floyd, R.W. 331
Ford, L.R. 435
Forecasting 161
Forest 375
Forsythe, G.E. 88
Forward elimination 59 60—62 64
Forward elimination (eliminate) 62
Fourier transform 471—480
Fredkin, E. 216
Friedman, J.H. 370
Fringe vertices 393 410
Fulkerson, D.R. 435
Garey, M.R. 536
Gauss — Jordan method 63 65 508
Gaussian elimination 57—65 71 76 504 508
Gaussian elimination (gauss) 60
gcd (greatest common divisor, Euclid's algorithm) 11 12
General regular-expression pattern matching 279
General regular-expression pattern matching (match) 265
Geometric algorithms 307—370
Geometric algorithms, 2D-trees 343—346
Geometric algorithms, closest pair 362—366
Geometric algorithms, convex hull 321—333 368
Geometric algorithms, elementary 307—319
Geometric algorithms, grid method 339—342
Geometric algorithms, inside polygon test 316—318
Geometric algorithms, intersection 349—359
Geometric algorithms, line drawing 310—311
Geometric algorithms, range searching 336—347
Geometric algorithms, simple closed path 313—315
Gerrymandering 307
Gold, B. 536
Gosper, R.W. 242
Graham scan 326—330
Graham scan (grahamscan) 329
Graham, R.L. 326 370
grammars 270—272
Graph algorithms 373—454
Graph algorithms, all-pairs shortest paths 492—494
Graph algorithms, biconnectivity 390—392
Graph algorithms, bipartite matching 444—447
Graph algorithms, breadth-first search 395
Graph algorithms, connected components 384
Graph algorithms, cycle testing 384
Graph algorithms, depth-first search 381—387
Graph algorithms, elementary 373—387
Graph algorithms, exhaustive search for cycles 515—520
Graph algorithms, maximum flow in a network 439—440
Graph algorithms, minimum spanning tree 408—413
Graph algorithms, priority traversal 395—397
Graph algorithms, shortest path 413—415
Graph algorithms, stable marriage 447—452
Graph algorithms, strongly connected components 428—430
Graph algorithms, topological sorting 426—428
Graph algorithms, transitive closure 423—426
Graph algorithms, union-find 398—405
Graph input, adjacency lists (adjlist) 379
Graph input, adjacency matrix (adjmatrix) 378
Graph isomorphism 387
Graph traversal 393—398
|
|
|
Ðåêëàìà |
|
|
|