Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms)
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The art of computer programming (Vol. 2. Seminumerical algorithms)

Àâòîð: Knuth D.E.

Àííîòàöèÿ:

This multivolume work on the analysis of algorithms has long been recognized as the definitive description of classical computer science. The three complete volumes published to date already comprise a unique and invaluable resource in programming theory and practice. Countless readers have spoken about the profound personal influence of Knuth's writings. Scientists have marveled at the beauty and elegance of his analysis, while practicing programmers have successfully applied his "cookbook" solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books. To begin the fourth and later volumes of the set, and to update parts of the existing three, Knuth has created a series of small books called fascicles, which will be published at regular intervals. Each fascicle will encompass a section or more of wholly new or revised material. Ultimately, the content of these fascicles will be rolled up into the comprehensive, final versions of each volume, and the enormous undertaking that began in 1962 will be complete. Volume 4, Fascicle 2 - This fascicle inaugurates the eagerly awaited publication of Knuth's "The Art of Co


ßçûê: en

Ðóáðèêà: Computer science/Àëãîðèòìû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd edition

Ãîä èçäàíèÿ: 1981

Êîëè÷åñòâî ñòðàíèö: 688

Äîáàâëåíà â êàòàëîã: 18.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Percentage point      41 43 48 69—70 368
Perfect numbers      389
Perfect square      372
Period in a sequence      7—9
Period in a sequence, length of      4 7—8 15—22 34—36 392—393
Periodic continued fraction      359 398
Permanent      480 497
Permutation test      64 75 76 147
Permutation, encoding      64 75 139
Permutation, random      139—141 369 441 632
Perron, Oskar      339
Persian mathematics      181—182 265 309 443
Pervushin, Rev. Ivan Mikheevich      391
Peters, Johann (= Jean) Theodor      661
Pfeiffer, John Edward      176
Phalen, Harold Romaine      184
Phi $(\phi)$      342 343 496 659—660
Phi $(\phi)$, number system      193
Phillips, Ernest William      185
Pi $\pi$      38 144—145 152 154 182 184 193 268 342 659—660
Pingala Acharya      441
Pippenger, Nicholas John      639
Places      250
Planck, Max Karl Ernst Ludwig, constant      198 211 223 225—226
Plass, Michael Frederick      614
Playwriting      174—176
Pocklington, Henry Cabourn      397
Pointer machine      295 301
Poisson, Simeon Denis, distribution      53 132—133 135—136 517
Poker test      62 72 151
Polar coordinates      54 57 118
Polar method      117—118 120 130—131
Pollard, John Michael      369 385 396 608 652
Polynomial      399—401
Polynomial chains      475—479 499—501
Polynomial, addition      399—401
Polynomial, arithmetic modulo m      34—35 400—401 444
Polynomial, characteristic      480
Polynomial, content of      405—406
Polynomial, degree of      399 401 410
Polynomial, derivative of      421 470 631
Polynomial, discriminant of      619 628 632
Polynomial, division      401—420 468—469 515
Polynomial, evaluation      466—505 588
Polynomial, factorization      420—441
Polynomial, greatest common divisor      405—420 434—436 440
Polynomial, interpolation      281—282 484—486 490 492 498 641
Polynomial, irreducible      403 417 421 437—441
Polynomial, leading coefficient of      399 433 435
Polynomial, monic      399 401 402 405 436 500
Polynomial, multiplication      399—400 489—494 503 652
Polynomial, multivariate      399—400 403 418—419 436 438—439 479—505
Polynomial, over a field      401—403 405 417 420—431 436—441
Polynomial, over a unique factorization domain      403—420 431—441
Polynomial, primitive      404 417
Polynomial, primitive modulo p      28—29 404
Polynomial, primitive part      404—406
Polynomial, random      417 430 436—437 439 441
Polynomial, remainder sequence      408—418 420 435—436 657
Polynomial, resultant      415 619
Polynomial, roots      22 416 418 420 464 474—475 499
Polynomial, squarefree      421 436 440
Polynomial, string      418—419
Polynomial, subtraction      399—401
Pope, David Alexander      263
Popper, Karl Raimund      166
Portable random number generator      171—173
Porter, J. W.      356—357
Positional representation of numbers      144—145 159—160 164 179—197 302—312
Positive definite quadratic form      94 111
Positive semidefinite matrix      551
Potency      22—25 50 71 76 78 88
Power series      see “Generating function”
Power series, manipulation of      506—515
Power tree      444—445 462—463
Power, raising to a      see “Exponentiation”
Power, raising to a, factorial      281—282 497 597 664
Powers, Don M.      296
Powers, evaluation of      441—466
Powers, Raymond E.      380 391
PR      143 145 162 166—169 242 249 453
Pratt, Vaughan Ronald      339 395 441
Precision, double      230—237 263—264 278—279
Precision, quadruple      237
Precision, single: fitting in one computer word      199
Precision, unlimited      265 268 314
Preconditioning      see “Adaptation”
Primality tests      364 374—380 391—398
Prime element in a unique factorization domain      403
Prime number      316—317 353 364 615
Prime number, distribution      366—369 395—396 615 632—633
Prime number, factorization into      12—13 317 353 364—398 464
Prime number, large      14 276 374—378 388—394 397 432 480
Prime number, Mersenne      391—395 397
Prime number, theorem      366 615
Prime number, useful      276 390 391 614 652
Prime number, verifying primality      364 374—380 391—398
Primitive element modulo m      19—22
Primitive notations for numbers      179 182
Primitive part      404—406
Primitive part of a polynomial      404—406
Primitive polynomial      404 417
Primitive polynomial modulo p      28—29 404
Primitive recursive function      159
Primitive root      437 438
Probabilistic algorithms      2 379—380 385—386 396—397 428—430 439 630
Probability, over the integers      143 145 162 166—169 242 249 453
Probability: ratio of occurrence      142 165
Probert, Robert Lome      641
Programming languages      206
Pronouncing hexadecimal numbers      185
Proof of algorithms      265 266 319—320
Proofs, constructive versus nonconstructive      270 273—274 585
Proper factor      see “Divisor”
Proth, F. (or E.)      614
Pseudo-division of polynomials      407 416
Pseudo-random sequence      3
Ptolemaeus (= Ptolemy), Claudius      181
Public key cryptography      388—389
Purdom, Paul Walton, Jr.      519
Quadratic congruential sequence      25—26 34
Quadratic forms      94 385 503
Quadratic forms, minimizing, over the integers      94—98 105 111—112
Quadratic irrationality      342 359 380—382 398
Quadratic reciprocity law      377 394 396 614
Quadratic residues      397 638
Quadruple-precision arithmetic      237
Quandalle, Philippe      651
Quasi-random numbers      3 173
Quater-imaginary number system      189 193—194 268
Quaternary number system      179 183
Quick, Jonathan Horatio      74
Quinary number system      179 183 197
Quotient, of polynomials      402—404 407 416
Quotient: [u/v]      250—251 see
Quotientpartial      83 342 345—353 615—616
Quotienttrial      255—260 263—264 266—267
Rabin, Michael Oser      380 389 396 397 430
Rabinowitz, Philip      264
Rademacher, Hans      86
Radioactive decay      6 128 132
Radix conversion      184 188 189 191 193—194 250 302—312 467 470
Radix conversion, floating point      309—312
Radix conversion, multiple-precision      309 311
Radix point      9 179 182 187—188 192—193 198 302
Radix, complex      189—190 193—194 268
Radix, irrational      193
Radix, mixed      64 99—100 183 192—196 266 274—275 309—310 486
Radix, negative      188—189 193—194 196 311
Radix: base of positional notation      179
Rail, Louis Baker      225
Raimi, Ralph Alexis      242 247
Raleigh, Sir Walter      183
Ramage, John Gerow      130
Ramanujan, SrTnivasa Aiyahgar      613
Ramaswami, Vammi      367
Ramshaw, Lyle Harold      157
Rand Corporation      2—3
Randell, Brian      186 209
Random bit      11 29—31 35—36 45 114—115 133
Random combination      136—141
Random direction      130—131
Random function      4—8 369
Random integer, among all positive integers      143 242 249 439 453
Random integer, in a bounded set      114—115 171
Random mapping      4—8 369
Random numbers      1—177
Random numbers, generating nonuniform deviates      114—136
Random numbers, generating uniform deviates      9—37 170—173
Random numbers, machines for generating      2—3 387
Random numbers, quasi-      3 173
Random numbers, summary      170—173
Random numbers, tables      2—3 152
Random numbers, testing      38—113 see
Random numbers, using      1—2 114—141 615 see
Random permutation      139—141 369 441 632
Random point, in a circle      117—118
Random point, in a sphere      131
Random point, on a sphere      130—131
Random point, on an ellipsoid      136
Random polynomial      417 430 436—437 439 441
Random random-number generator      4—8 25
Random sample      136—141
Random sequence, finite      145 161—164
Random sequence, meaning of      2 142—169
Random waiting time      114
Randomness, definitions of      142—169
Randomness, improving      25 31—34 37
RANDU      25 104 173 525
Range arithmetic      212 225—227 230 570
Rank, of a matrix      425—427 488 496 502 625
Rank, of a tensor      488—489 494—496 501—505
Rank, of apparition      393
Rapoport, Anatol      519
Ratio method      125—128 135
Rational arithmetic      68 313—316 409 506—507
Rational functions      401 479 500
Rational functions, approximation and interpolation      420 515
Rational number      313 401 439
Rational number, approximation      314—316 363—364
Rational number, positional representation      195 311 359
Real numbers      401
Real Time      270
Realization of a tensor      489
Reciprocal      264 295—297 403
Reciprocal differences      487
Reciprocal, floating point      228
Reciprocal, mod m      25 427 437 595 599
Reciprocity laws      79 86 377 394 396 614
Recorde, Robert, xi      265
Rectangle-wedge-tail method      118—123 134
Rectangular distribution      see “Uniform distribution”
Recurrence relations      9 25—29 33—37 246—247 279 280 285—286 288 295 296—297 300 332—333 392—395 481—482 506 507 519 568 597 630 637 654 655
recursive method      237 279 283—285 287 295 400 481—482 632 652—653 658
Reeds, James Alexander, III      561
Rees, David      36 163
Regular continued fraction      330 341—342 352—353 358—363
Reiser, John Fredrick, vii      28 36 227
Reitwiesner, George Walter      265
Rejection method      120—123 129 134—135 553
Relative error      206 213 216—217 237 240
Relatively prime      11 313 324 404 417
Remainder      250—251 256 402 407 416 515 see
Replicative law      86
Representation of numbers      see “Number system”
Representation of oo      209 230 315 593
Representation of trees      463 530 555 634
Reservoir sampling      138—140
Residue arithmetic      269 see
result set      475—476 499
Resultant of polynomials      415 619
Revah, Ludmila      647
Reverse of a polynomial      416 434 436 618 657
Reversing binary number system      196
Reversion of power series      508—511 514
Revolving binary number system      196
Rezucha, Ivan      137
Rhind papyrus      443
Rho method      see “Monte Carlo method for factoring”
Rieger, Georg Johann      605
Riemann, Georg Friedrich Bernhard      78 396
Riemann, hypothesis      366—367 380 632
Riemann, integration      146—147 244
Ring with identity, commutative      399 401 407
Riordan, John      520
Rivest, Ronald Linn      386 648
Robber      174—176
Robinson, Donald Wilford      528
Robinson, Julia Bowman      616
Robinson, Raphael Mitchel      614 652
Roman numerals      179 193 679
Romani, Francesco      482
Roof, Raymond Bradley      110
Roots of a polynomial      22 416 418 420 464 474—475 499
Roots of unity      see “Cyclotomic polynomials” “Exponential
Ross, Douglas Taylor      176
Rotenberg, Aubey      10 45
Roulette      9 53 240
Rounding      201 203 206 207 212 215—216 219 221—222 226 314—316 363—364
Rounding overflow      201 203 204 207 208 211—212
Rozier, Charles P.      308
RSA box      386—389 397
Rudolff, Christof      182
Rumely, Robert Scott      380
Run test      61 65—68 72 74 88 151 167
Runge, Carl David Tolme      642
Runs above (or below) the mean      61
Russian peasant method      443
Ruzsa, Imre Zoltan      197
Ryser, Herbert John      497 641
Sachau, Karl Eduard      441
Sahni, Sartaj      58
Saidan, Ahmad Salim      182 441
Salamin, Eugene      268
Samelson, Klaus      226—227 310
Samet, Paul Alexander      304
Sampling (without replacement)      1 136—141
Sampling weighted      141
Sands, Arthur David      567
Savage, John Edmund      648
Sawtooth function      77 86
Saxe, James Benjamin      136
Scarborough, James Blaine      226
Schmid, Larry Philip      71
Schmidt, Erhard, orthogonalization process      97 620
Schmidt, Wolfgang M.      169
Schnorr, Claus-Peter      166 397 478
Scholz, Arnold      459
Schonhage, Arnold      276 287—288 290 295 300 301 311 451 465 482 592 598 638 655
Schreyer, Helmut      186
Schroder, Ernst      512
Schroder, Ernst, function      512—513
Schroeppel, Richard Crabtree      383 384
Schwartz, Jacob Theodore      619
Schwarz, Stefan      430
Secrest, Don      265 310
secret keys      177 386—389 397 486
secure communications      386—389 397
Sedecimal number system      186 see
Sedgewick, Robert      518
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå