Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms)
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: The art of computer programming (Vol. 2. Seminumerical algorithms)
Àâòîð: Knuth D.E.
Àííîòàöèÿ: This multivolume work on the analysis of algorithms has long been recognized as the definitive description of classical computer science. The three complete volumes published to date already comprise a unique and invaluable resource in programming theory and practice. Countless readers have spoken about the profound personal influence of Knuth's writings. Scientists have marveled at the beauty and elegance of his analysis, while practicing programmers have successfully applied his "cookbook" solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books. To begin the fourth and later volumes of the set, and to update parts of the existing three, Knuth has created a series of small books called fascicles, which will be published at regular intervals. Each fascicle will encompass a section or more of wholly new or revised material. Ultimately, the content of these fascicles will be rolled up into the comprehensive, final versions of each volume, and the enormous undertaking that began in 1962 will be complete. Volume 4, Fascicle 2 - This fascicle inaugurates the eagerly awaited publication of Knuth's "The Art of Co
ßçûê:
Ðóáðèêà: Computer science /Àëãîðèòìû /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 2nd edition
Ãîä èçäàíèÿ: 1981
Êîëè÷åñòâî ñòðàíèö: 688
Äîáàâëåíà â êàòàëîã: 18.11.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Percentage point 41 43 48 69—70 368
Perfect numbers 389
Perfect square 372
Period in a sequence 7—9
Period in a sequence, length of 4 7—8 15—22 34—36 392—393
Periodic continued fraction 359 398
Permanent 480 497
Permutation test 64 75 76 147
Permutation, encoding 64 75 139
Permutation, random 139—141 369 441 632
Perron, Oskar 339
Persian mathematics 181—182 265 309 443
Pervushin, Rev. Ivan Mikheevich 391
Peters, Johann (= Jean) Theodor 661
Pfeiffer, John Edward 176
Phalen, Harold Romaine 184
Phi 342 343 496 659—660
Phi , number system 193
Phillips, Ernest William 185
Pi 38 144—145 152 154 182 184 193 268 342 659—660
Pingala Acharya 441
Pippenger, Nicholas John 639
Places 250
Planck, Max Karl Ernst Ludwig, constant 198 211 223 225—226
Plass, Michael Frederick 614
Playwriting 174—176
Pocklington, Henry Cabourn 397
Pointer machine 295 301
Poisson, Simeon Denis, distribution 53 132—133 135—136 517
Poker test 62 72 151
Polar coordinates 54 57 118
Polar method 117—118 120 130—131
Pollard, John Michael 369 385 396 608 652
Polynomial 399—401
Polynomial chains 475—479 499—501
Polynomial, addition 399—401
Polynomial, arithmetic modulo m 34—35 400—401 444
Polynomial, characteristic 480
Polynomial, content of 405—406
Polynomial, degree of 399 401 410
Polynomial, derivative of 421 470 631
Polynomial, discriminant of 619 628 632
Polynomial, division 401—420 468—469 515
Polynomial, evaluation 466—505 588
Polynomial, factorization 420—441
Polynomial, greatest common divisor 405—420 434—436 440
Polynomial, interpolation 281—282 484—486 490 492 498 641
Polynomial, irreducible 403 417 421 437—441
Polynomial, leading coefficient of 399 433 435
Polynomial, monic 399 401 402 405 436 500
Polynomial, multiplication 399—400 489—494 503 652
Polynomial, multivariate 399—400 403 418—419 436 438—439 479—505
Polynomial, over a field 401—403 405 417 420—431 436—441
Polynomial, over a unique factorization domain 403—420 431—441
Polynomial, primitive 404 417
Polynomial, primitive modulo p 28—29 404
Polynomial, primitive part 404—406
Polynomial, random 417 430 436—437 439 441
Polynomial, remainder sequence 408—418 420 435—436 657
Polynomial, resultant 415 619
Polynomial, roots 22 416 418 420 464 474—475 499
Polynomial, squarefree 421 436 440
Polynomial, string 418—419
Polynomial, subtraction 399—401
Pope, David Alexander 263
Popper, Karl Raimund 166
Portable random number generator 171—173
Porter, J. W. 356—357
Positional representation of numbers 144—145 159—160 164 179—197 302—312
Positive definite quadratic form 94 111
Positive semidefinite matrix 551
Potency 22—25 50 71 76 78 88
Power series see “Generating function”
Power series, manipulation of 506—515
Power tree 444—445 462—463
Power, raising to a see “Exponentiation”
Power, raising to a, factorial 281—282 497 597 664
Powers, Don M. 296
Powers, evaluation of 441—466
Powers, Raymond E. 380 391
PR 143 145 162 166—169 242 249 453
Pratt, Vaughan Ronald 339 395 441
Precision, double 230—237 263—264 278—279
Precision, quadruple 237
Precision, single: fitting in one computer word 199
Precision, unlimited 265 268 314
Preconditioning see “Adaptation”
Primality tests 364 374—380 391—398
Prime element in a unique factorization domain 403
Prime number 316—317 353 364 615
Prime number, distribution 366—369 395—396 615 632—633
Prime number, factorization into 12—13 317 353 364—398 464
Prime number, large 14 276 374—378 388—394 397 432 480
Prime number, Mersenne 391—395 397
Prime number, theorem 366 615
Prime number, useful 276 390 391 614 652
Prime number, verifying primality 364 374—380 391—398
Primitive element modulo m 19—22
Primitive notations for numbers 179 182
Primitive part 404—406
Primitive part of a polynomial 404—406
Primitive polynomial 404 417
Primitive polynomial modulo p 28—29 404
Primitive recursive function 159
Primitive root 437 438
Probabilistic algorithms 2 379—380 385—386 396—397 428—430 439 630
Probability, over the integers 143 145 162 166—169 242 249 453
Probability: ratio of occurrence 142 165
Probert, Robert Lome 641
Programming languages 206
Pronouncing hexadecimal numbers 185
Proof of algorithms 265 266 319—320
Proofs, constructive versus nonconstructive 270 273—274 585
Proper factor see “Divisor”
Proth, F. (or E.) 614
Pseudo-division of polynomials 407 416
Pseudo-random sequence 3
Ptolemaeus (= Ptolemy), Claudius 181
Public key cryptography 388—389
Purdom, Paul Walton, Jr. 519
Quadratic congruential sequence 25—26 34
Quadratic forms 94 385 503
Quadratic forms, minimizing, over the integers 94—98 105 111—112
Quadratic irrationality 342 359 380—382 398
Quadratic reciprocity law 377 394 396 614
Quadratic residues 397 638
Quadruple-precision arithmetic 237
Quandalle, Philippe 651
Quasi-random numbers 3 173
Quater-imaginary number system 189 193—194 268
Quaternary number system 179 183
Quick, Jonathan Horatio 74
Quinary number system 179 183 197
Quotient, of polynomials 402—404 407 416
Quotient: [u/v] 250—251 see
Quotientpartial 83 342 345—353 615—616
Quotienttrial 255—260 263—264 266—267
Rabin, Michael Oser 380 389 396 397 430
Rabinowitz, Philip 264
Rademacher, Hans 86
Radioactive decay 6 128 132
Radix conversion 184 188 189 191 193—194 250 302—312 467 470
Radix conversion, floating point 309—312
Radix conversion, multiple-precision 309 311
Radix point 9 179 182 187—188 192—193 198 302
Radix, complex 189—190 193—194 268
Radix, irrational 193
Radix, mixed 64 99—100 183 192—196 266 274—275 309—310 486
Radix, negative 188—189 193—194 196 311
Radix: base of positional notation 179
Rail, Louis Baker 225
Raimi, Ralph Alexis 242 247
Raleigh, Sir Walter 183
Ramage, John Gerow 130
Ramanujan, SrTnivasa Aiyahgar 613
Ramaswami, Vammi 367
Ramshaw, Lyle Harold 157
Rand Corporation 2—3
Randell, Brian 186 209
Random bit 11 29—31 35—36 45 114—115 133
Random combination 136—141
Random direction 130—131
Random function 4—8 369
Random integer, among all positive integers 143 242 249 439 453
Random integer, in a bounded set 114—115 171
Random mapping 4—8 369
Random numbers 1—177
Random numbers, generating nonuniform deviates 114—136
Random numbers, generating uniform deviates 9—37 170—173
Random numbers, machines for generating 2—3 387
Random numbers, quasi- 3 173
Random numbers, summary 170—173
Random numbers, tables 2—3 152
Random numbers, testing 38—113 see
Random numbers, using 1—2 114—141 615 see
Random permutation 139—141 369 441 632
Random point, in a circle 117—118
Random point, in a sphere 131
Random point, on a sphere 130—131
Random point, on an ellipsoid 136
Random polynomial 417 430 436—437 439 441
Random random-number generator 4—8 25
Random sample 136—141
Random sequence, finite 145 161—164
Random sequence, meaning of 2 142—169
Random waiting time 114
Randomness, definitions of 142—169
Randomness, improving 25 31—34 37
RANDU 25 104 173 525
Range arithmetic 212 225—227 230 570
Rank, of a matrix 425—427 488 496 502 625
Rank, of a tensor 488—489 494—496 501—505
Rank, of apparition 393
Rapoport, Anatol 519
Ratio method 125—128 135
Rational arithmetic 68 313—316 409 506—507
Rational functions 401 479 500
Rational functions, approximation and interpolation 420 515
Rational number 313 401 439
Rational number, approximation 314—316 363—364
Rational number, positional representation 195 311 359
Real numbers 401
Real Time 270
Realization of a tensor 489
Reciprocal 264 295—297 403
Reciprocal differences 487
Reciprocal, floating point 228
Reciprocal, mod m 25 427 437 595 599
Reciprocity laws 79 86 377 394 396 614
Recorde, Robert, xi 265
Rectangle-wedge-tail method 118—123 134
Rectangular distribution see “Uniform distribution”
Recurrence relations 9 25—29 33—37 246—247 279 280 285—286 288 295 296—297 300 332—333 392—395 481—482 506 507 519 568 597 630 637 654 655
recursive method 237 279 283—285 287 295 400 481—482 632 652—653 658
Reeds, James Alexander, III 561
Rees, David 36 163
Regular continued fraction 330 341—342 352—353 358—363
Reiser, John Fredrick, vii 28 36 227
Reitwiesner, George Walter 265
Rejection method 120—123 129 134—135 553
Relative error 206 213 216—217 237 240
Relatively prime 11 313 324 404 417
Remainder 250—251 256 402 407 416 515 see
Replicative law 86
Representation of numbers see “Number system”
Representation of oo 209 230 315 593
Representation of trees 463 530 555 634
Reservoir sampling 138—140
Residue arithmetic 269 see
result set 475—476 499
Resultant of polynomials 415 619
Revah, Ludmila 647
Reverse of a polynomial 416 434 436 618 657
Reversing binary number system 196
Reversion of power series 508—511 514
Revolving binary number system 196
Rezucha, Ivan 137
Rhind papyrus 443
Rho method see “Monte Carlo method for factoring”
Rieger, Georg Johann 605
Riemann, Georg Friedrich Bernhard 78 396
Riemann, hypothesis 366—367 380 632
Riemann, integration 146—147 244
Ring with identity, commutative 399 401 407
Riordan, John 520
Rivest, Ronald Linn 386 648
Robber 174—176
Robinson, Donald Wilford 528
Robinson, Julia Bowman 616
Robinson, Raphael Mitchel 614 652
Roman numerals 179 193 679
Romani, Francesco 482
Roof, Raymond Bradley 110
Roots of a polynomial 22 416 418 420 464 474—475 499
Roots of unity see “Cyclotomic polynomials” “Exponential
Ross, Douglas Taylor 176
Rotenberg, Aubey 10 45
Roulette 9 53 240
Rounding 201 203 206 207 212 215—216 219 221—222 226 314—316 363—364
Rounding overflow 201 203 204 207 208 211—212
Rozier, Charles P. 308
RSA box 386—389 397
Rudolff, Christof 182
Rumely, Robert Scott 380
Run test 61 65—68 72 74 88 151 167
Runge, Carl David Tolme 642
Runs above (or below) the mean 61
Russian peasant method 443
Ruzsa, Imre Zoltan 197
Ryser, Herbert John 497 641
Sachau, Karl Eduard 441
Sahni, Sartaj 58
Saidan, Ahmad Salim 182 441
Salamin, Eugene 268
Samelson, Klaus 226—227 310
Samet, Paul Alexander 304
Sampling (without replacement) 1 136—141
Sampling weighted 141
Sands, Arthur David 567
Savage, John Edmund 648
Sawtooth function 77 86
Saxe, James Benjamin 136
Scarborough, James Blaine 226
Schmid, Larry Philip 71
Schmidt, Erhard, orthogonalization process 97 620
Schmidt, Wolfgang M. 169
Schnorr, Claus-Peter 166 397 478
Scholz, Arnold 459
Schonhage, Arnold 276 287—288 290 295 300 301 311 451 465 482 592 598 638 655
Schreyer, Helmut 186
Schroder, Ernst 512
Schroder, Ernst, function 512—513
Schroeppel, Richard Crabtree 383 384
Schwartz, Jacob Theodore 619
Schwarz, Stefan 430
Secrest, Don 265 310
secret keys 177 386—389 397 486
secure communications 386—389 397
Sedecimal number system 186 see
Sedgewick, Robert 518
Ðåêëàìà