Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms)
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The art of computer programming (Vol. 2. Seminumerical algorithms)

Àâòîð: Knuth D.E.

Àííîòàöèÿ:

This multivolume work on the analysis of algorithms has long been recognized as the definitive description of classical computer science. The three complete volumes published to date already comprise a unique and invaluable resource in programming theory and practice. Countless readers have spoken about the profound personal influence of Knuth's writings. Scientists have marveled at the beauty and elegance of his analysis, while practicing programmers have successfully applied his "cookbook" solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books. To begin the fourth and later volumes of the set, and to update parts of the existing three, Knuth has created a series of small books called fascicles, which will be published at regular intervals. Each fascicle will encompass a section or more of wholly new or revised material. Ultimately, the content of these fascicles will be rolled up into the comprehensive, final versions of each volume, and the enormous undertaking that began in 1962 will be complete. Volume 4, Fascicle 2 - This fascicle inaugurates the eagerly awaited publication of Knuth's "The Art of Co


ßçûê: en

Ðóáðèêà: Computer science/Àëãîðèòìû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd edition

Ãîä èçäàíèÿ: 1981

Êîëè÷åñòâî ñòðàíèö: 688

Äîáàâëåíà â êàòàëîã: 18.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Floor function      77 665
FLOT (float)      208
Floyd, Robert W      7 265 344 487
FMUL (floating multiply)      208 498
Forsythe, George Elmer      4 124
FORTRAN      171—172 265
Fourier, Jean Baptiste Joseph      264
Fourier, Jean Baptiste Joseph, division method      264
Fourier, Jean Baptiste Joseph, series      86 467—468
Fourier, Jean Baptiste Joseph, transform, discrete      290—294 300 482—484 487 494 497 502—503
Fraction overflow      201 239 249
Fraction part of a floating point number      198—199 206 223—225 231 239—249
Fractions, arithmetic on      68 313—316 409 506—507
Fractions, decimal      181—182
Fractions, exponentiation      464
Fractions, terminating      311
Fractions: Numbers in [0,1), conversion      302—311
Fractions: rational numbers      313 401
Fraenkel, Aviezri S      274 276 585
Franel, Jerome      243
Franklin, Joel Nick      142 152 153 164 167 168 542
Franta, William Ray      58
Free associative algebra      418—419
Frequency function      see “Density function”
Frequency test      59 72
Friedland, Paul      570
Frobenius, Ferdinand Georg      625 632
FSUB (floating subtract)      208
Fundamental Theorem of Arithmetic      317 364 464
Galambos, Janos      611
Galois, Evariste, field      see “Finite field”
Galois, Evariste, field, group of a polynomial      625 632
Gambling system      155
Gamma distribution      129—130 135
Gamma function, incomplete      54 58 129
Gap test      60—61 72—73 131 151 167
Gardner, Martin      38 184
Garner, Harvey Louis      265 274 276
Gauss, Karl (= Carl) Friedrich      346 398 404 543 631
Gauss, lemma about polynomials      404 626
Gaussian integers      544
Gay, John      1
Gebhardt, Friedrich      33
Gehrhardt, Karl Immanuel      184
Geiringer, Hilda, von Mises      73
Gel'fond, Aleksandr Osipovich      627
Generalized Riemann hypothesis      380 632
Generating functions      135 140 246—247 262—263 333 506 535 551 568 623 624 629 636—637
Generating uniform deviates      9—37 170—173
Geometric distribution      131 132 135 535 549 551
Geometric series      79 291 501 641
Gibb, Allan      227
Gill, Stanley      210
Gioia, Anthony Alfred      449
Girard, Albert      405
Givens, James Wallace, Jr.      90
Glaser, Anton      185
Globally nonrandom behavior      49—51 75
Goertzel, Gerald      468
Goldschmidt, Robert E.      296
Goldstine, Herman Heine      186 263 310
Golomb, Solomon Wolf      141 430 611 652
Goncalves      see “Vicente Goncalves”
Gonzalez, Teofllo      58
Good, Irving John      60 169
Gosper, Ralph William, Jr.      vii 98 104 112 190 339 360 363 518 602
Gosset, William Sealy (= Student), distribution      130
Goulard, A.      458
Gradual underflow      206
Graham, Ronald Lewis      465 565
Graph      460—462 466
Gray, Frank, code      193 640
Gray, Herbert L.      227
Greater than, definitely      208 218—219 227—228
Greatest common divisor      316—339 464
Greatest common divisor, binary algorithm for      321—323 330—339 417
Greatest common divisor, Euclidean algorithm for      see “Euclid's algorithm”
Greatest common divisor, in unique factorization domain      405
Greatest common divisor, multiple-precision      327—330 339
Greatest common divisor, of n numbers      323—324 362 364
Greatest common divisor, of polynomials      405—420 434—436 440
Greatest common right divisor      419
Greek mathematics      180—181 318—320 342
Green, Bert F.      26
Greenberger, Martin      16 84 525
Greenwood, Robert Ewing      72
GRH      see “Generalized Reimann hypothesis”
Griinwald, Vittorio      188 189
Grosswald, Emil      86
Grube, Andreas      547
Guilloud, Jean      268
Gustavson, Fred Gehrung      657
Guy, Richard Kenneth      385 396
Hadamard, Jacques Salomon, inequality      414 418 480
Halberstam, Heini      614
Hales, Alfred Washington      430
Halton, John Henry      157
Halving      277 311 321—322 360 443
Hamblin, Charles Leonard      401
Hamlet, Prince of Denmark      v
Hammersley, John Michael      173
Hamming, Richard Wesley      240 248
Handscomb, David Christopher      173
Hansen, Eldon Robert      574
Hansen, Walter      453 455 457 459—460 464
Hanson, Richard Joseph      573
Hardware: computer circuitry, algorithms suitable for      212 (exercise 15) 229 265—267 276 296—299 305 310—312 320—321 441—442 637
Hardy, Godfrey Harold      366 369 606
Harmonic numbers      661—662 664
Harmonic probability      249
Harmuth, Henning Friedolf      483
Harriot, Thomas      183
Harris, Bernard      519
Harris, Vincent Crockett      323 339
Harrison, Charles, Jr.      227
Harrison, Michael Alexander      iv
Hashing      68 555
Haynes, Charles Edmund, Jr.      104
Hebb, Kevin Ralph      458
Heilbronn, Hans Arnold      356—357 362
Heindel, Lee Edward      622
Hellman, Martin Edward      388
Henrici, Peter      315 507
Hensel, Kurt Wilhelm Sebastian      433 628
Hensel, lemma      35 439
Hermite, Charles      111
Herzog, Thomas Nelson      166 558
Hexadecimal digits      179 185 194
Hexadecimal number system      179 184—185 593
Hexadecimal number system, floating point      238—239 248
Hexadecimal number system, nomenclature for      185
Hickerson, Dean Robert      384
Hindu mathematics      181 265
Hitchcock, Frank Lauren      488
Hlawka, Edmund      113.
Hoaglin, David Caster      vii
Hoare, Charles Antony Richard      642
Homogeneous polynomial      418 640
Hopcroft, John Edward      482 489 641
Horner, rule for polynomial evaluation      467—469 479 485 496 499 501
Horner, William George      467 470
Horowitz, Ellis      486
Howard, John Vernon      165
Howe, Marion Elaine      vii
Howell, Thomas David      648
Huff, Darrell      39
Hull, Thomas Edward      16
Hurwitz, Adolf      360 603
Hyde, John Porter      401
IBM 360/91      380
IBM System/370      14—15
Idempotent      517 636
Identity, commutative ring with      399 401 407
Ikebe, Yasuhiko      237
Imaginary radix      189 193—194 268
Improving randomness      25 31—34 37
Inclusion and exclusion principle      337 536 567 593 623 640
Incomplete gamma function      54 58 129
Increment in a linear congruential sequence      9—10 15 21 84—85 93 171
Independence of random numbers      2 40 43—44 50 53 57 91 225 532
Independence, algebraic      499
Independence, linear      381 423 425—427 610
Indian mathematics      181 192 265
Induction, mathematical      319
Induction, mathematical, on the course of computation      251 254 265—266 320
Infinite continued fraction      341 358
Infinity lemma      564
Infinity, representation of      209 230 315 593
Inner product      95 481 502
Integer solution to equations      326—327 337 359
Integer, random, among all positive integers      143 242 249 439 453
Integer, random, in a bounded set      114—115 171
Integer-valued distribution      131—135
Integrated circuit module      297
Integration      146—147 154 244
Interpolation      281—282 348 484—486 490 492 498 641 657
Interpretive routine      210
Interval arithmetic      212 225—227 230 570
Inverse Fourier transform      291 588 641
Inverse function      116 128 656 see
Inverse modulo m      25 277 337 437
Inverse of a matrix      95—96 314 482 657
Irrational radix      193
Irrationality, quadratic      342 359 380—382 398
Irreducible polynomial      403 417 421 437—441
Ishibashi, Yoshihiro      275
Iteration of series      511—513 515
Iur'ev, Sergei Petrovich      350
Iverson, Kenneth Eugene      210
Ja'Ja', Joseph      496
JA0 (jump A odd)      322
Jacobi, Carl Gustav Jacob, symbol      396—397
JAE (jump A even)      322 462
Janssens, Frank      104 110
Jansson, Birger      518 527
Jefferson, Thomas      213
Jeremiah      515
Johnk, Max Detlev      130
Johnson, Samuel      213
Jones, Rev. Hugh      184 309
Jones, Terence Gordon      137
Jordaine, Joshua      183
Judd, John Stephen      378
Jurkat, Wolfgang Bernhard      641
JX0 (jump X odd)      203 322
JXE (jump X even)      322
k-distributed sequence      144—149 162 164 166—168
Kac, Mark      369
Kahan, William M.      vii 206 210 211 226 227 228 229 230 571 574
Kanner, Herbert      310
Karatsuba, Anatolii Alekseevich      279 401
Keir, Roy Alex      592
Kempner, Aubrey John      188 363
Kendall, Maurice George      2—3 72—73
Kermack, William Ogilvy      72
Kerr, Leslie Robert      641
Kesner, Oliver      210
Khinchin, Aleksandr Iakovlevich      339 604
Kinderman, Albert John      125—126 130
Klarner, David Anthony      197
Klem, Laura      26
Knop, Robert Edward      131
Knopp, Konrad      347
Knuth, Donald Ervin,      ii vi-vii 4 29 85 133 152 180 189 210 227 318 357 362 369 472 561 564 611 661 689
Knuth, Jennifer Sierra      xiv
Knuth, John Martin      xiv
Kohavi, Zvi      479
Kolmogorov — Smirnov test      45—52 54—58 59 68
Kolmogorov, Andrei Nikolaevich      54 163 165 166 169
Konheim, Alan Gustave      247
Konig, Hermann      642
Koons, Florence      310
Kornerup, Peter      315—316
Korobov, Nikolai Mikhallovich      110 152 164
Kraitchik, Maurice Borisovich      380 391
Krishnamurthy, Edayathumangalam Venkataraman      264
Kronecker, Leopold      431 605 623 631 663
Kruskal, Martin David      520
KS test      see “Kolmogorov — Smirnov test”
Kuipers, Lauwerens      110 164
Kulisch, Ulrich Walter Heinz      227
Kung, Hsiang Tsung      510 514 657
Kuz'min, Rodion Osievich      346
La Touche, Mrs.      178 214
Laderman, Julian David      641
Lafon, Jean-Claude      641
Lagrange, identity: ${(\Sigma{a}_{k}{b}_{k})}^{2} = (\Sigma{a}_{k}^{2})(\Sigma{b}_{k}^{2}) - \Sigma{({a}_{k}{b}_{j} - {a}_{j}{b}_{k})}^{2}$      536
Lagrange, interpolation polynomial      484
Lagrange, inversion formula      508
Lagrange, Joseph Louis, comte      359 363 437 508
Lake, George Thomas      310
Lalanne, Leon Louis Chretien      192
Lame, Gabriel      343
Landau, Edmund Georg Hermann      578
Laplace, Pierre Simon, marquis de      346
Large prime numbers      14 276 374—378 388—394 397 432 480
Lattice      93
Lattice-point model of binary gcd algorithm      330—338 344
Laughlin, Harry Hamilton      264
Lavaux, Michel      104
Leading coefficient of a polynomial      399 433 435
Leading digit      179
Leading digit, distribution of      239—249 387
leading zeros      206 223—227
Least common left multiple      419
Least common multiple      17 22 276—277 316—317 320 336 464 595
Least remainder algorithm      361
Least significant digit      179
Lebesgue, Henri Leon, measure      154 159—161 165 350—352 361
Legendre, Adrien Marie      309 366 380
Leger, R.      552
Lehman, Russell Sherman      371 388
Lehmer, Derrick Henry      vi 9—10 45 52 142 264 328—329 367 374 375 378 380 391 395 397 465 607 629
Lehmer, Derrick Norman      263 612
Lehmer, Emma Markovna Trotskaia      374
Leibniz (= Leibnitz), Gottfried Wilhelm, freiherr von      184
Lempel, Abraham      530
Leonardo Pisano      see “Fibonacci”
Leong, Benton Lau      466
Leslie, Sir John      192
Less than, definitely      208 218—219 227—228
Levene, Howard      72
LeVeque, William Judson      359 516
Levin, Leonid Anatol'evich      164
Levy, Paul      346
Lewis, John Gregg      572
Lewis, Peter Adrian Walter      642
Lewis, Theodore Gyle      30
Liang, Franklin Mark      vii
Linear congruential sequence      9—11
Linear congruential sequence, choice of increment      10 15 21 84—85 93 171
Linear congruential sequence, choice of modulus      11—15 170
Linear congruential sequence, choice of multiplier      10 15—25 84—86 98—105 170—171
Linear congruential sequence, choice of seed      15 19 137 170
Linear congruential sequence, period length      15—22
Linear congruential sequence, subsequence of      10 71
Linear equations      276
Linear equations, integer solution to      326—327
Linear iterative array      297—300 311
Linear lists      265 266 268
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå