Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences
Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences

Àâòîðû: Tenenbaum M., Pollard H.

Àííîòàöèÿ:

This book has been written primarily for you, the student. We have tried to make it easy to read and easy to follow.
We do not wish to imply, however, that you will be able to read this text as if it were a novel. If you wish to derive any benefit from it, you must study each page slowly and carefully. You must have pencil and plenty of paper beside you so that you yourself can reproduce each step and equation in an argument. When we say "verify a statement," "make a substitution," "add two equations," "multiply two factors," etc., you yourself must actually perform these operations. If you carry out the explicit and detailed instructions we have given you, we can almost guarantee that you will, with relative ease, reach the conclusion.
One final suggestion—as you come across formulas, record them and their equation numbers on a separate sheet of paper for easy reference. You may also find it advantageous to do the same for Definitions and Theorems.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1985

Êîëè÷åñòâî ñòðàíèö: 819

Äîáàâëåíà â êàòàëîã: 05.11.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Legendre equation, functions of the second kind, $Q_k(x)$      597
Legendre polynomials, $P_k(x)$      597—605
Legendre polynomials, properties of      598-605
Legendre polynomials, properties of, coefficients in binomial series expansion      598—600
Legendre polynomials, properties of, orthogonal property      602—604
Legendre polynomials, properties of, other integral properties      604—605
Legendre polynomials, properties of, recursion formula      601
Legendre polynomials, properties of, Rodrigue's formula      602
Legendre polynomials, properties of, values of $P_n(0)$, $P_n(1)$, $P_n(-1)$      600—601
Libby, Dr. Willard F.      5
Line elements      39
Lineal element diagram      39
Lineal elements      39
Linear coefficients      62—69
Linear combinations, definition of      205
Linear dependence of functions      205 775-Comment 777-5
Linear dependence of solutions      781-Comment 64.15
Linear dependence, definition of      205
Linear differential equations, Bessel      see "Bessel equation"
Linear differential equations, characteristic equation of      212—220
Linear differential equations, characteristic equation of, definition      212
Linear differential equations, characteristic equation of, roots imaginary      217—220
Linear differential equations, characteristic equation of, roots real and distinct      213—214
Linear differential equations, characteristic equation of, roots real but some multiple      214—217
Linear differential equations, complementary function of      210
Linear differential equations, definition of      92 196
Linear differential equations, Euler      247
Linear differential equations, exact      248
Linear differential equations, existence theorem for      see "Existence and uniqueness theorems"
Linear differential equations, first order      91—95
Linear differential equations, first order, definition of      92
Linear differential equations, first order, general solution of      93
Linear differential equations, first order, integrating factor for      94
Linear differential equations, first order, solution of      92
Linear differential equations, form of solution of      211—220
Linear differential equations, fundamental theorems for      207 208
Linear differential equations, Gauss's      587
Linear differential equations, general solution of      93 210 788
Linear differential equations, Hermite      607
Linear differential equations, homogeneous with constant coefficients      211—220
Linear differential equations, homogeneous with nonconstant coefficients      241—246
Linear differential equations, homogeneous, definition of      196
Linear differential equations, hypergeometric      587
Linear differential equations, integrating factors for      94 248
Linear differential equations, Laguerre      624—630
Linear differential equations, Legendre      see "Legendre equation"
Linear differential equations, n linearly independent solutions of      208 786
Linear differential equations, nonhomogeneous      221—246
Linear differential equations, nonhomogeneous with constant coefficients      221—240
Linear differential equations, nonhomogeneous with nonconstant coefficients      236—237 241—246
Linear differential equations, nonhomogeneous, definition of      196
Linear differential equations, ordinary point of      570
Linear differential equations, reduction to a system      784—785
Linear differential equations, singularity of      570
Linear differential equations, singularity of, irregular      572
Linear differential equations, singularity of, regular      571
Linear differential equations, solution of, by complex variables      230—231
Linear differential equations, solution of, by inverse operators      272—282 288—291
Linear differential equations, solution of, by Laplace transforms      296—302
Linear differential equations, solution of, by method of Frobenius      572—584
Linear differential equations, solution of, by partial fraction expansion of inverse operators      288—291
Linear differential equations, solution of, by polynomial operators      262—265
Linear differential equations, solution of, by power series      537—546
Linear differential equations, solution of, by reduction of order      242—246
Linear differential equations, solution of, by undetermined coefficients      221—230
Linear differential equations, solution of, by variation of parameters      233—240
Linear differential equations, systems of      see "System entries"
Linear differential equations, Tschebyscheff      589
Linear differential equations, uniqueness theorem for      see "Existence and uniqueness theorems"
Linear independence of functions      205 775-Comment 777-5
Linear independence of solutions      781-Comment 64.15
Linear independence, definition of      205
Linear property of inverse operators      296
Linear property of Laplace transformation      295
Linear property of polynomial operators      253
Linearization of first order systems      424—438
Lipschitz condition      731 734 764 766
Liquid, flowing through an orifice      183
Liquid, rotating in a cylinder      193—194
Logarithmic decrement      356
Maclaurin series      535
Magnification ratio      363
Mass, variable      191—193
Mathematical induction      250
Mean, law of the      731
Method of Frobenius      572 see
Method of reduction of order      242—246
Method of undetermined coefficients      221—230
Method of variation of parameters      233—240
Milne method for second order equation      710—711
Milne method for system of two first order equations      703
Milne method for third order equation      712-4
Milne method for y'=f(x,y)      684—689
Milne method, comment on error in      688—689
Modulated amplitude      345
Modulus of elasticity      385
Modulus, Young's      385
Moment of force      381
Moment of inertia      381
Moment, bending      384
Momentum, angular      472
Motion of a complex system      189—191
Motion of a particle in space      see "Particle in motion in space subject to a central force"
Motion of a particle on a circle      316—317
Motion of a particle on a straight line      138—166 314—316
Motion of a projectile      463—465
Motion, damped, forced      359—364
Motion, damped, free (damped harmonic)      348—353
Motion, forced, damped      359—364
Motion, forced, undamped      338—342
Motion, free, damped (damped harmonic)      348—353
Motion, free, undamped      see "Simple harmonic motion"
Motion, horizontal      160—162
Motion, inclined      164—166
Motion, period of      318 333 351 477
Motion, planetary      491—492
Motion, stable      339
Motion, steady state      361
Motion, transient      361
Motion, undamped, forced      338—342
Motion, undamped, free      see "Simple harmonic motion"
Motion, unstable      340
Multiplicity of solutions      28—31
Mutual inductance      454
n-parameter family of solutions, definition of      30
n-parameter family of solutions, finding a differential equation from an      31—33
Natural (undamped) frequency      318 319
Neutral surface      384
Newton's first law of motion      138
Newton's interpolation formulas      663—671
Newton's interpolation formulas, backward      669
Newton's interpolation formulas, error in      670 671
Newton's interpolation formulas, forward      667
Newton's law of universal gravitation      491
Newton's proof of inverse square law      494—495
Newton's second law motion      138 459
Nonhomogeneous linear equation, definition of      196
Nonlinear equations, existence and uniqueness theorem for      765—767
Nonlinear equations, numerical solution of      see "Numerical methods"
Nonlinear equations, reduction to a system      766—767
Nonlinear equations, series solution of      562—567 see
Normal, coordinates      444
Normal, frequencies      443
Number, complex      197
Number, pure imaginary      197
Number, real      197
Numerical methods      631—718
Numerical methods for a second order equation      707—711 712-3 715—718
Numerical methods for a system of three first order equations      726-2
Numerical methods for a system of two first order equations      702—706 723—726
Numerical methods for a third order equation      712-4
Numerical methods for first order equation y'=f(x,y)      632—658 681-6 684—688 690—701 713—715
Numerical methods, Adams'      681 712-3
Numerical methods, choosing size of h      691—692
Numerical methods, continuing      632
Numerical methods, corrector      632
Numerical methods, decreasing h      692—694
Numerical methods, difference tables      660 662 663 670
Numerical methods, errors      see "Error" "Errors"
Numerical methods, fifth degree polynomial      676 678 691 703
Numerical methods, finite differences      659—661
Numerical methods, fourth degree polynomial      681-2
Numerical methods, illustrative example and summary      694—701
Numerical methods, improvement of polygonal method      641—643
Numerical methods, increasing and reducing h      692—694
Numerical methods, Milne      see "Milne method"
Numerical methods, Newton's interpolation formulas      663—671
Numerical methods, Newton's interpolation formulas, backward      669
Numerical methods, Newton's interpolation formulas, forward      667
Numerical methods, perturbation theory      713—718
Numerical methods, perturbation theory, first order equation      713—715
Numerical methods, perturbation theory, second order equation      716—718
Numerical methods, Picard's      see "Picard's method of successive approximations"
Numerical methods, polygonal      632—638
Numerical methods, polynomial interpolation      see "Polynomial interpolation"
Numerical methods, reducing and increasing h      692—694
Numerical methods, Runge — Kutta      see "Runge — Kutta formulas"
Numerical methods, series      645—652
Numerical methods, Simpson's rule      677 678 684
Numerical methods, sixth degree polynomial      677
Numerical methods, starting methods      632 see
Numerical methods, summary and an example      694—701
Numerical methods, Taylor series      645—652
Numerical methods, third degree polynomial      676 678
Numerical methods, three-eighths rule      681
Numerical methods, trapezoidal rule      675 678 682
Numerical methods, Weddle's rule      677 678 691 703
Oceanic pressure      186—188
Operator, differential      251 see "Polynomial
Order of a differential equation      21
Order of a homogeneous function      57 58
Ordinary differential equation, definition of      20
Ordinary point of a linear differential equation      570
Ordinary point of y'=f(x,y)      43 744—747
Orifice, flow through an      183
Orthogonal trajectory in polar coordinates      118
Orthogonal trajectory in rectangular coordinates      117
Orthogonal, definition of, functions      602
Orthogonal, property of Bessel functions      622
Orthogonal, property of Laguerre polynomials      630
Orthogonal, property of Legendre polynomials      602—604
Oscillator, harmonic      323—329 377
Output of a system      341 360 372
Overdamped      349
Parabolic reflector      759—760
Parameters, number of      30
Parameters, variation of      233—240
Parasite problem      447—451
Partial differential equation, meaning of      20
Partial fraction expansion      283—284
Partial fraction expansion of inverse operators      287 289
Particle in motion in space subject to a central force      470—496 521—522
Particle, force inversely proportional to cube of distance      521—522
Particle, force inversely proportional to square of distance      481—488 494
Particle, force inversely proportional to square of distance, determining constants of integration      484—486
Particle, force inversely proportional to square of distance, energy considerations      487—488
Particle, force inversely proportional to square of distance, planetary motion      491—492
Particle, force proportional to distance      476—479
Particle, Kepler's laws      492
Particle, law of conservation of angular momentum      471—472
Particle, law of conservation of energy      475
Particle, moves in plane, proof that particle      470—471
Particle, moving in a circle      316—317
Particle, moving in a plane      see "Particle in motion in space subject to a central force"
Particle, moving in rotating tube      380
Particle, moving on a straight line      138—166 314—316
Particle, period of      477 492
Particle, satisfies law of conservation of angular momentum      471—472
Particle, satisfies law of conservation of energy      475
Particle, special central force problem      521—522
Particle, sweeps out equal areas in equal times, proof that particle      472
Particular solution of a differential equation      33—37
Particular solution of a differential equation, definition of      35
Pendulum, actual period of      333
Pendulum, amplitude of      328
Pendulum, period independent of amplitude      334-34
Pendulum, simple      327—329
Pendulum, weight of wire not negligible      331-29
Perigee      490
Period      318 477
Period, actual, of a simple pendulum      333
Period, damped      351
Perturbation method      713—718
Perturbation method, first order equation      713—715
Perturbation method, second order equation      715—718
Phase and phase angle      318
Picard's method of successive approximations      720—726
Picard's method of successive approximations for a system of three first order equations      726-9
Picard's method of successive approximations for a system of two first order equations      723—726
Picard's method of successive approximations for first order equations      720—723
Plane analytic geometry, a review of      62—63
Plane motion of a particle      see "Particle in motion in space subject to a central force"
Plane motion of a projectile      463—465
Planetary motion      491—492
Point, singular      43 744—747
Polar form of a complex number      199
Polygonal method      632—638
Polygonal method, an improvement of      641—643
Polygonal method, comment on errors in      636—638
Polynomial interpolation      661—684
Polynomial interpolation, Adams'      681 712-3
Polynomial interpolation, error in      670—671 679
Polynomial interpolation, fifth degree polynomial      676 678 679
Polynomial interpolation, function      662
Polynomial interpolation, Newton's, (backward) formulas      669
Polynomial interpolation, Newton's, (forward) formulas      667
Polynomial interpolation, Simpson's rule      675 678 679 684
Polynomial interpolation, sixth degree polynomial      677
Polynomial interpolation, third degree polynomial      676 678 679
Polynomial interpolation, three-eighths rule      681
Polynomial interpolation, trapezoidal rule      675 678 679 682
Polynomial interpolation, Weddle's      677 678 679
Polynomial operators      251—265
Polynomial operators of order n      251
Polynomial operators, algebraic properties of      255—259
Polynomial operators, associative law of addition      256
Polynomial operators, associative law of multiplication      257
Polynomial operators, commutative law of addition      256
Polynomial operators, commutative law of multiplication      258
Polynomial operators, definition of      251
Polynomial operators, distributive law of multiplication      258
Polynomial operators, exponential shift theorem for      260
Polynomial operators, exponential shift theorem for, corollaries to      261
Polynomial operators, factoring of      258
Polynomial operators, linear property of      253
Polynomial operators, P(D)y, definition      252
Polynomial operators, P(D+a), definition      259
Polynomial operators, product of h(x) by      256
Polynomial operators, product of two      257
Polynomial operators, solution of linear equations by      262—265
Polynomial operators, solution of systems of linear equations by      398—417
Polynomial operators, sum of two      255
Polynomials, Hermite      607
Polynomials, Laguerre      625—630
Polynomials, Legendre      597—605
Polynomials, Tschebyscheff      589
Potential      473
Potential, energy      329 473
Power series      see "Series" "Solution
Pressure, atmospheric and oceanic      186—188
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå