Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences
Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences

Àâòîðû: Tenenbaum M., Pollard H.

Àííîòàöèÿ:

This book has been written primarily for you, the student. We have tried to make it easy to read and easy to follow.
We do not wish to imply, however, that you will be able to read this text as if it were a novel. If you wish to derive any benefit from it, you must study each page slowly and carefully. You must have pencil and plenty of paper beside you so that you yourself can reproduce each step and equation in an argument. When we say "verify a statement," "make a substitution," "add two equations," "multiply two factors," etc., you yourself must actually perform these operations. If you carry out the explicit and detailed instructions we have given you, we can almost guarantee that you will, with relative ease, reach the conclusion.
One final suggestion—as you come across formulas, record them and their equation numbers on a separate sheet of paper for easy reference. You may also find it advantageous to do the same for Definitions and Theorems.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1985

Êîëè÷åñòâî ñòðàíèö: 819

Äîáàâëåíà â êàòàëîã: 05.11.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Energy, potential      329 473
Envelopes of a family of curves      747—754
Envelopes of a family of solutions      754—757
Envelopes of a family, definition of      748
Envelopes of a family, eliminant of      750
Equation, indicial      574
Equilibrium position      317
Equivalent triangular system      405 406 416
Error in an improvement of polygonal method      644-3
Error in fifth degree polynomial      679
Error in Milne method      688—689
Error in Newton's interpolation formulas      670—671
Error in polygonal method      636—638
Error in polynomial interpolation      670—671 679
Error in Runge — Kutta      657—658
Error in Simpson's rule      679—684
Error in Taylor series      537 649—652 653-4
Error in third degree polynomial      679
Error in trapezoidal rule      679 683
Error in Weddle's rule      679
Error, function      670
Errors, arithmetical      636
Errors, cumulative      636 690
Errors, formula      636 690
Errors, general comment on      636 690—691 703
Errors, rounding off      636 690
Escape velocity      148
Euler equation      247
Exact differential      72
Exact differential equation      70—78 248-25
Exact differential equation, definition of      73 248-25
Exact differential equation, necessary and sufficient condition for      73 248-25
Exact differential equation, recognizable      80—81
Exact differential equation, solution of      73 76
Existence and uniqueness theorems      720
Existence and uniqueness theorems, first order equation y'=f(x,y)      734—743
Existence and uniqueness theorems, linear equation of order n      783—786
Existence and uniqueness theorems, nonlinear equation of order n      765—767
Existence and uniqueness theorems, system of n first order equations      763—765
Existence and uniqueness theorems, system of n linear first order equations      768—770
Explicit solution      21—23
Explicit solution, definition of      22
Exponential complex function      201
Exponential shift theorem for inverse operators      277
Exponential shift theorem for polynomial operators      260
f(a), definition of      11
f(b,y), meaning of      18-10
f(x,a), definition of      13
F-2 region of atmosphere      155
Factorial function (n!)      306—308 596
Factors of polynomial operators      258
Falling bodies      see "Vertical motion"
Faltung theorem      303
Family, n-parameter of solutions      30 31—33
Family, n-parameter, envelopes of      754—756
Family, of curves, envelopes of      748—754
Field of force      473
Field, conservative      473
Field, direction      39
Field, slope      39
Fifth degree interpolating polynomial      676 678 679
Finite differences      659—661
First order equations with homogeneous coefficients      57—60
First order equations with linear coefficients      63—68
First order equations with separable variables      51—55
First order equations, Bernoulli      95—96
First order equations, Clairaut      757—760
First order equations, exact      70—78
First order equations, existence and uniqueness theorem for      734—743
First order equations, integrating factors of      84—90 94—95
First order equations, linear      91—95
First order equations, miscellaneous      101—103
First order equations, perturbation theory      713—715
First order equations, problems giving rise to      see "Problems first
First order equations, recognizable exact      80—82
First order equations, Riccati      97 247-22 247-23 247-24
First order equations, solution of y'=f(x,y) by numerical methods      see "Numerical methods"
First order equations, solution of y'=f(x,y) by Picard's method      720—723
First order equations, solution of y'=f(x,y) by series method      548—553
First order, processes      137
Flow through an orifice      183
Force of gravity      140
Force, central      see "Particle in motion in space subject to a central force"
Force, centrifugal      380
Force, centripetal      380
Force, damping      349 350 351
Force, electromotive      369
Force, field      473
Force, field of      473
Force, frictional      160
Force, function      473
Force, impressed (forcing function)      338 360
Force, induced electromotive      185
Force, intermittent      344
Force, inversely proportional to cube of distance      521—522
Force, inversely proportional to square of distance      481—488 494
Force, moment of      381
Force, proportional to distance      476—479
Forced motion with damping      359—364
Forced motion, undamped      338—342
Forcing function      338
Formula errors      636 679
Forward differences, ($\Delta$, delta)      659—668
Fourth degree interpolating polynomial      681-2
Fractions of inverse operators      287 289
Fractions, partial      283—284
Free motion, damped      347—353
Free motion, undamped      313—329 see
Frequency, damped      351
Frequency, impressed      339
Frequency, natural (undamped)      318 319
Frequency, normal      443
Frequency, resonance      373 443
Frequency, undamped resonant      341
Friction, coefficient of      160
Friction, sliding      160
Friction, static      160
Frictional force      160
Frobenius, method      572 see
Frobenius, series      572
Function of one independent variable      6—11 14—17 48
Function of one independent variable, definition of      6 9
Function of one independent variable, definition of f(a)      11
Function of one independent variable, differential of a      48
Function of one independent variable, elementary      17
Function of one independent variable, implicit      14—17
Function of one independent variable, range of      9
Function of two independent variables      11—14 18 50 57—58
Function of two independent variables, definition of      11
Function of two independent variables, definition of f(b,y)      18-10
Function of two independent variables, definition of f(x,a)      13
Function of two independent variables, differential of a      50
Function of two independent variables, domain of definition of a      11
Function of two independent variables, homogeneous, of order n      57 58
Function of two independent variables, range of      11
Functions, analytic      537
Functions, analytic on an interval      537
Functions, beta      306
Functions, complementary      210
Functions, continuous      730 731
Functions, continuous at a point      730
Functions, continuous in a region      731
Functions, continuous on an interval      730
Functions, Dirac $\delta$      344
Functions, elementary      17
Functions, elliptic      333 334
Functions, error      670
Functions, factorial (n!)      306—308 596
Functions, force      473
Functions, forcing      338 360
Functions, gamma      306—309
Functions, homogeneous, of order n      57 58
Functions, hypergeometric      587
Functions, Legendre      594
Functions, Legendre of second kind, $Q_k(x)$      597
Functions, orthogonal      602
Functions, polynomial interpolating      662
Functions, remainder      670
Functions, sequence of      728 729 732
Functions, series of      732—733
Functions, unit impulse      344
Functions, vector point      473
Fundamental theorem of algebra      197 198
Fundamental theorem of calculus      70
Gamma function      306—309
Gamma function, definition of      307
Gauss's equation      587
General solution of a differential equation      28—37
General solution of a first order linear equation      93
General solution of a homogeneous linear equation      210 788
General solution of a nonhomogeneous linear equation      210 789
General solution, definition of a      35
Geometric problems leading to Clairaut equation      761
Geometric problems leading to first order equation      107—111
Geometric problems leading to special types of second order equations      528—530
Grammian      777
Graphical solutions      38—44 424—438
Gravitation, Newton's universal law of      491
Gravitational constant      139 491
Gravity, force of      140
Gravity, specific      153
Growth problems      131—132
Hailey's comet      492
Hanging cable      507—514
Harmonic motion, damped      348—353
Harmonic motion, undamped      see "Simple harmonic motion"
Harmonic oscillators      323—329 377
Harmonic oscillators, elastic helical spring      324—326
Harmonic oscillators, simple pendulum      327—329
Heat, specific      130
Heat, steady state flow of      185—186
Helical spring      see "Elastic helical springs"
Hermite, equation      607
Hermite, polynomials      607
Homogeneous function, order of a      57 58
Homogeneous in x, equation      505
Homogeneous linear equations      see "Linear differential equations"
Hooke's law      324
Horizontal motion      160—162
Hyperbolic, cosine      203
Hyperbolic, sine      203
Hyperbolic, tangent      203
Hypergeometric, equation      587
Hypergeometric, function      587
Hypergeometric, series      587
I (current)      369 370
i (imaginary unit)      197
Identically zero, meaning of      775
Imaginary number, part of a complex number      197
Imaginary number, pure      197
Impedance of a circuit      372
Implicit function      14—17
Implicit function, definition of      16
Implicit solution of an equation      24—27
Implicit solution of an equation, definition of      24
Impressed, force (forcing function)      338
Impressed, frequency      339
Improper integrals, convergence of      292 294
Improper integrals, divergence of      292
Improvement of polygonal method      641—643
Impulse function, unit      344
Impulsive response of a system      344
Inclined motion      164—166
Incomplete elliptic integral of the first kind      334
Independence of functions      see "Linear independence of functions"
Independent solutions of linear equation, number of      208 786
Indicial equation      574
Induced, current      185
Induced, electromotive force      185
Inductance, coefficient of      370
Inductance, mutual      454
Induction, mathematical      250
inductor      369
Inertia      381
Inertia, moment of      381
Inertia, rotational      381
Infinite series      see "Series"
Initial conditions      33—37
Initial conditions, definition of      36
Initial conditions, number of      36
Input of a system      341 360 372
Integrable combinations      81
Integral curve, definition of      39
Integral, convergence of      292
Integral, divergence of      292
Integral, elliptic of the first kind, complete      333
Integral, elliptic of the first kind, incomplete      334
Integral, improper      292 294
Integral, Riemann      70
Integrals, approximations to      see "Numerical methods"
Integrating factors      82—90
Integrating factors of first order equation      84—90 94—95
Integrating factors of second order linear equation      248
Integrating factors, definition of      82
Interest problems      126—127
Intermittent force      344
Interpolation      see "Polynomial interpolation"
interval      6
Interval of convergence      532
Inverse Laplace transform, definition of      296
Inverse Laplace transform, linear property of      296
Inverse operators      268—282
Inverse operators, definition of      269 270
Inverse operators, exponential shift theorem for      277
Inverse operators, meaning of      269—271
Inverse operators, partial fraction expansion of      287
Inverse operators, series expansion of      272—277
Inverse operators, solution of linear equation by      272—282 288—291
Inverse square law      481—488 491 494
Irregular singularity      572
Isoclines of a direction field      40—41
Isogonal trajectory      115—117
Isogonal trajectory, definition of      115
Isothermal surface      185
Kepler's laws      492
kinetic energy      329 475
Kirchhoff's, first law      451
Kirchhoff's, second law      370
Kutta      see "Runge — Kutta formulas"
Laguerre equation      624—630
Laguerre polynomials, $L_k(x)$      625—630
Laguerre polynomials, properties of      627—630
Laguerre polynomials, properties of, analogue of Rodrigue's formula      627—629
Laguerre polynomials, properties of, integral property      629—630
Laguerre polynomials, properties of, orthogonal with respect to weight function $e^{-x}$      630
Laplace transforms, construction of table of      302—306 309—311
Laplace transforms, definition of      294
Laplace transforms, Faltung theorem      303
Laplace transforms, inverse      296
Laplace transforms, properties of      295—296
Laplace transforms, solution of a linear equation by      296—302
Laplace transforms, solution of a system by      418—420
Laplace transforms, tables of      306 310
Law of conservation of angular momentum      472
Law of conservation of energy      329 475
Law of the mean      731
Law of the mean of universal gravitation      491
Legendre equation      586 591—605 606-13
Legendre equation, comment on solution of      593—594
Legendre equation, functions      594
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå