|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Darboux, Gaston 343 361
Day-planes 127
De Lahire, Philippe 128n.
de Moivre formula 146
de Morgan, Augustus 382—383 398—399
Declinations 12—13 15
Dedekind, Richard 305 402—403
Deferents 175
Defrise, P. 378
Delian problem, classical 111
Dembowski, Peter 423
Democritus 182—183 190 194 196
Denisova, Natalya Serafimovna 411
Derivation, doctrine of 200
derivatives 197 281—284 292—294 310—311 316—317 351 364
Derivatives, partial 248 250 321
Desargues, Girard 136—140 416—417
Descartes, Ren 159 163 168—172 184—185
Determinants 250 255 342 352 389
Developability conditions 281
Dialectic method 198
Dickson, Leonard Eugene 411
Diderot 179—180
Differential equations 293 304 309 316 348 353
Differential equations, of geodesics 282 290
Differentials 197—198 270 282 302 317 324 334
Dilgn, Hmit 86n.
Dimensionality, axiom of 263 279
Diodorus 42
Diophantus 153—155 167
Diopters 124
Dirac, Paul Adrian 278 418—419
Dirichlet, Peter Lejeune 380 401 402
Distance 211 229—238 241—244 255 258 264 272
Dodecahedra 256 345—346
Drum (tympanum astronomical instrument) 123—126 128—130
Du Val, Patrick 313—314
Duality principle 342 369—370
Dupin, Charles 281
Dynamics 141 202 265 266 268 312
Dynamis 152
Dynamodynamis 153
Dynamokybos 153
Dynkin, Eugene 355—357 360 369 371
D’Aguillon, Francois 124 134
d’Alembert, Jean le Rond 177—180 185
Ecliptics 1—3 10—11 123 125—126 129-130
Egyptians 1
Ehresmann, Charles 325 366 425—426
Eigenvalues 258 273 278 354—355 390—391
Eigenvectors 354—355 367 390—391
Einstein, Albert 212 265—266 268 309 319
Electrodynamics 265
Ellipses 34 113—115 122 127 131—148 246 347
Ellipsoids 113 246
Encke, Johann Franz 219
Engel, Friedrich 348
Engels, Friedrich 189—190 204 257n.
Enriques, Federigo 260
Epicycles 175
Equator 3 128—129
Equator, celestial see Celestial equator
Equinoxes 2
Euclid 3—5 35—50 52—100 110 112 188 218 262 383 384
Euclid, axioms and four-dimensional rectangular coordinates 337
Euclid, definitions of square, cubic, plane, and solid numbers 152
Euclid, proportions “by equality” 119
Euclid, stereometric propositions 24
Euclid, straight line indefinite extension 183
Euclid, three-dimensional analogues 156
Eudemus 110
Eudoxus 35 89—90 92 123 191
Eudoxus, Eudoxus — Archimedes axiom 39 44 47 51 54 57—59 262n.
Euler curves classified by 258—259
Euler geometry of position 173 301—302
Euler Latin squares 421
Euler motion of fluids 178
Euler stereographic projection of sphere onto plane 130
Euler theorem 255 304
Euler, Leonhard 31—34 102 143—150 185 275 280—283 388- 391
Eutocius 65
Exhaustion, method of 35 131—132 191
Extensions 210 252 351 424
Faces 255—256
Fano, Gino 420
Farpetzi, Ghazar 42
Fedenko, Anatoli Semenovi 364
Fedorov, Evgraf Stepanovi 347
Fermat, Pierre 162—163 168—170 401—402
Fibrations (fiber spaces) 321—323 418
Field quantization 278
Field theory, unified 317—320
Fields 395 400—402 404 408—409 420 425
Figures, concave and subconcave 162
Finikov, Sergei Pavlovi 323
Flag 260
foci 34 135—136 149 296
Fomin, Viktor Egorovi 279
Fourier, Jean Baptiste 274—275
Fractions, continued 95
Frames of reference 265 268
Francesca, Piero della 134
Frcchet, Maurice 304—306
Frenet, Frederic 324
Fresnel, Augustin J. 266
Freudenthal, Hans 387 416—418
Friedmann (Fridman), Aleksandr Aleksandrovi 313
Frisius, Gemma 129n.
Frobenius, Georg 403 404 407—408
Fubini, Guido Ghirin 361 363
Fuchs, Lazarus 239 241 346
Functions 1 142 219—232 271—278 289—292 305 346-347
Functions, abelian 259 302
Functions, analytic 147 150 178 399
Functions, curvilinear coordinates introduced by Gauss 283
Functions, exponential 31
Functions, Hamilton’s 380—381
Functions, homogeneous 248—250 334
Functions, linear 255
Functions, linear vector function 393
Functions, monodromy property 336
Functions, point 309 319—320
Functions, quadratic 250
Functions, wave 419
Fuss, Nicolai Ivanovi 33—34
Galen 300
Galilei, Galileo 375
Galois, Evariste 328—333 348 352 400—401 420 424
Gauss intrinsic geometry of a surface 291—292 294
Gauss quadratic forms 324
Gauss topological investigations 302
Gauss, Carl Friedrich 108 179 202—204 214—220 283—286 386 400-401
Gel’fand, Izrail Moiseevi 366—367 377
Generators 93 299 342 410
Genus (of a curve) 259 302—303 347
Geodesy and geodesics 17 233 282—293 311—312 320 364
Geometric notions, origin of 200 202
Geometric theorems, auxiliary 22
geometries 1 34 85—101 152 180 204—246 279 289—302 420-427
Geometries, analytic 253—254 256
Geometries, atomistic 194
Geometries, elliptic 266
Geometries, enumerative 260
Geometries, existence doubted by Gauss 215
Geometries, Lobaevskian 207
Geometries, multidimensional 251 254 256—258 260 276
Geometries, non — Euclidean 59 65 106—107 109 268 269 312—313 341
Geometries, plane 262 337 341—342
Geometries, projective 121 147—148 250 341- 343
Geometries, pseudo — Euclidean 266 309
| Geometries, quaternion symplectic 362
Geometries, Riemannian 316 359
Geometries, spherical 39 287
Geometries, symplectic 415
Geometries, synthetic projective 147—149 256
Geometry of position 173—174
Gergonne, Joseph Diaz 138n.
Gerling, Christian Ludwig 215 217 218
Gerson, Levi ben see Levi ben Gerson
Ghaznawl, Mahmud 16
Gibbs, Josiah Willard 393—394
Giordano, Vitale 96 173 211
Girard, Albert 27—31 34
Glagolev, Nil Aleksandrovi 378
Gleason, Andrew 350
Gluskov, Viktor Mihalovi 350
Gnomon, vertical 12
Gois, Manuel de 161 183
Goldbach, Christian 385
Goldstein, Bernard R 90
Gondavo, Henry de 183
Gordon, Walter 381
Gosset, Thorold 346
Gottingen Scientific Society 220
Grassmann, Hermann Gnther 174 251—261 289 301 393—399 408
Graves, Charles 383—384 386—387 398-399
Graves, John Thomas 386—387 398
Gravitation 149 150 185 311—312 317
Gre, Nikolai Ivanovi 209
Greeks 1—2 10—11 181
Grigoryan, Edik, Sarkisovi 56
Grisogono, Federik Bartolai 93
Grosseteste, Robert (Robert of Lincoln) 196
Grossmann, Marcel 309—310
groups 305 325 327—381 407—427
Gur’ev, Semen Emel’yanovi 104 107—108
Hlgu Khn 21
Half-chord (jva) 11
Half-turn 112
Hamilton, William Rowan 166—167 179 250 380—382 385—387 393—394 398
Haritonova, Nadeda Ivanovna 424
Harley, Henry 196
Harmonic mean 30
Harriot, Thomas 31
Hausdorff, Felix 306—308
Heaviside, Oliver 390 393—394
Hegel, Georg Wilhelm Friedrich 198 199
Heisenberg, Werner 318—319
Helgason, Sigurdur 364
Helmholtz, Hermann 267 333—338 348
hemisphere 123 128
Hermite, Charles 275
Hermitian forms 358 361—362 378—379
Heron 34 65 153
Hesse, Otto 341 362
hexagons 121
Hilbert, David 261—262 273—276 333 349—350 402 416—417 426
Hippocrates of Chios 35
Hjelmslev, Juhannes 406
Hoel, Jules 220—221
Homeomorphisms 255 306 331
Homogeneity principle 163 169
Homologies 140 143 304 308
Homomorphisms 403 407
Homotheties 112
Hoppe, Reinhold 256
Horizon 2—3 12 117 123 125 127
Horocycles 109 230—231 244 289
horoscopes 123
Horospheres 230—231 245
Hour angle 129—130
Hour lines 123 126n.
Hours 126—127
Hua, Loo Keng 405 415
Hudson, Hilda 347—348
Huygens, Christian 171—172 211—212 253
Hyperbolas 115 127 134—148 246 267—268 337 347
Hyperbolisms 142 347
Hyperboloids 93 113 229—230 245—246 266—267 297—298 344
Hypercones 376
Hypercycles 217
Hypergeometry 261
Hyperplanes 313 344—345 362 370 406—407 420
Hyperquadrics 376
Hyperspace 260—261
Hyperspheres 217 291 424
Hypersurfaces 291 313 324
Ibn al-Haytham, Abu ‘Al (Alhazen) 57 59—65 74—96 100 112 134—135 175
Ibn al-Nadm, Ab l — Faraj Muhammad 40—41
Ibn Fath, Sinn 155
Ibn Qurra motion used in geometry 92 112
Ibn Qurra parallel postulate proof 77 83
Ibn Qurra rules for coordinate systems’ transitions 167 168
Ibn Qurra, Thbit 15—16 20 23—24 41 49—60 96 131
Ibn Rushd (Averroes) 183 196
Ibn Sna, Ab ‘Al (Avicenna) 16 58—59 194
Ibn Sinn, Ibrhm 131—133
Ibn Ynis. Kaml al-Dn 85
Ibn ‘Irq, Ab Nasr Mansr 5 16—20
Ichnography (plan) 117
Icosahedra 256 345—346
Ideae 117
Ideal 403—405
Idempotents 406
Identity axiom 306
Images 133 243—244
Inn, Erdal 377
Incendiary mirror (parabola) 135—136
Incidence axioms 262
Inclination of two planes, equal 3
India and Indian science 17
Indices (of a space) 264 279 313—314 361—362 399 409
Indivisibles 112 196—197
Inertia 312
infinity 39 98 102 143 161 181—183 296—297
Infinity, divisibility 85 190 192
Infinity, plane at 235
Infinity, points at 133—134 136 140 149—150 237
Infinity, simple 257
Initius Algebras 158
Integrals and integration 15 208—210 240 259 274 276—277 302
Integrals and integration, multiple 247—249 256 323
Invariance under rotation property 7
Invariants of algebraic forms 233 235 258 340
Inversions 114—116 118—119 142 242—245 340 347 415
Involutions 138—139 413
Involutive correlations 421—422
Involutory property 20—21
Isometries 146 320
Isomorphisms 333 346 351 361—363 403—410 420
Ivanenko, Dmitri Dmitrievi 426—427
Jacobi, Carl Gustav Jacob 248—251 275 321 351 386
Jacobson, F. D. 413
Jacobson, Nathan 413
Jankiewicz, Czesaw (Yankevi) 378
Javadov, Maqsud Ali Simran oglu (Davadov) 405 410—411 415
Jordan, Camille 257—258 324 333 338 346 348 392
Jordan, Paskual 412—415 417
Jung, F. 310 393
Kagan, Veniamin Fedorovi 80n.
Kallenberg, G. W. M 376
Kaluza, Theodor 318
Kant, Immanuel 179 187—188 203 208—210 215 218
Kantor, Isa L’vovi 367 413 417
Kapralova, Sofya Borisovna 424
Karpova, Lyudmila Mihailovna 377 411
Kepler, Johann 31 134—136 196
Khayym, Khayym — Saccheri quadrilaterals 71—73 76 83 91—98 104 230
Khayym, theory of parallels 64—77 90—91 94—95
Khayym, ‘Umar 38 46 57—58 95 112 154 195
|
|
|
Ðåêëàìà |
|
|
|