Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Matrix algorithms. Volume 2: Eigensystems

Àâòîð: Stewart G.W.

Àííîòàöèÿ:

This book is the second volume in a projected five-volume survey of numerical linear algebra and matrix algorithms. This volume treats the numerical solution of dense and large-scale eigenvalue problems with an emphasis on algorithms and the theoretical background required to understand them. Stressing depth over breadth, Professor Stewart treats the derivation and implementation of the more important algorithms in detail. The notes and references sections contain pointers to other methods along with historical comments.

The book is divided into two parts: dense eigenproblems and large eigenproblems. The first part gives a full treatment of the widely used QR algorithm, which is then applied to the solution of generalized eigenproblems and the computation of the singular value decomposition. The second part treats Krylov sequence methods such as the Lanczos and Arnoldi algorithms and presents a new treatment of the Jacobi-Davidson method.

The volumes in this survey are not intended to be encyclopedic. By treating carefully selected topics in depth, each volume gives the reader the theoretical and practical background to read the research literature and implement or modify new algorithms. The algorithms treated are illustrated by pseudocode that has been tested in MATLAB implementations.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 469

Äîáàâëåíà â êàòàëîã: 23.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Schur decomposition and Jordan form      22 24
Schur decomposition by rowwise deflation      72
Schur decomposition, computation by explicit shift QR algorithm      98—100
Schur decomposition, computing eigevectors      see “Triangular matrix computing
Schur decomposition, partial      407
Schur decomposition, Schur vector      12 me
Schur vector      12
Schur vector, relation to eigenvectors      12 15
Schur, I.      24
Schwarz, H.R.      201
Scott, D.S.      365 379
Scott, J.A.      395
Secular equation      24
Semidefinite B-Lanczos and Arnoldi algorithms      375—379 380
Semidefinite B-Lanczos and Arnoldi algorithms, assessment      379
Semidefinite B-Lanczos and Arnoldi algorithms, geometry      375—376
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error      376
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, defective matrix      380
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, effect on Rayleigh quotient      376
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, effect on Ritz vectors      376—377
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, growth      378 380
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, purging      378—379 380
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, rounding-error analysis      380
SEP      46 53—54 143 255
Sep and physical separation of eigenvalues      50—51 256
Sep, Hermitian matrices      51
Sep, properties      256
Shift-and-invert enhancement      66
Shift-and-invert enhancement, factorization      67
Shift-and-invert enhancement, solving linear systems      67—68
Similarity transformation      8
Similarity transformation, eigenvalues and eigenvectors      9
Similarity transformation, invariance of trace      9
Similarity transformation, unitary similarity      10
Simon, H.      346 365—367
Simple eigenspace      244 (see also “Eigenspace”)
Simple eigenspace, angles between right and left eigenespaces      251
Simple eigenspace, biorthogonal basis for left eigenspace      245
Simple eigenspace, block diagonalization      244—246
Simple eigenspace, block diagonalization, several eigenspaces      245—246
Simple eigenspace, complementary eigenspace      245
Simple eigenspace, corresponding left eigenspace      245
Simple eigenspace, deflation of an approximate eigenspace      254—255 265
Simple eigenspace, perturbation theory      265
Simple eigenspace, perturbation theory, accuracy of the Rayleigh quotient      260 265
Simple eigenspace, perturbation theory, alternate bound      265
Simple eigenspace, perturbation theory, bounds for eigenspace      261
Simple eigenspace, perturbation theory, bounds in terms of the error      259
Simple eigenspace, perturbation theory, condition of an eigenblock      260
Simple eigenspace, perturbation theory, condition of an eigenspace      261
Simple eigenspace, perturbation theory, main theorem      258
Simple eigenspace, perturbation theory, normalization of bases      259
Simple eigenspace, residual bounds      257
Simple eigenspace, residual bounds, limitations      257
Simple eigenspace, resolvent      247
Simple eigenspace, spectral projector      247
Simple eigenspace, spectral representation      245
Simple eigenspace, spectral representation, several eigenspaces      246
Simple eigenspace, spectral representation, standard representation      245
Simple eigenspace, uniqueness      246 247
Simpson      418
Singular value      204
Singular value and 2-norm      205
Singular value and eigenvalues of the cross-product matrix      157 205
Singular value and Frobenius norm      205
Singular value decomposition      55 204
Singular value decomposition and 2-norm      27
Singular value decomposition and spectral decomposition of cross-product matrix      205
Singular value decomposition, differential qd algorithm      228
Singular value decomposition, divide-and-conquer algorithms      228
Singular value decomposition, downdating      228
Singular value decomposition, history      226
Singular value decomposition, Jacobi methods      228—229
Singular value decomposition, Jacobi methods, one-sided method      229
Singular value decomposition, Jacobi methods, two-sided method of Kogbetliantz      228
Singular value decomposition, Lanczos algorithm      366—367
Singular value decomposition, singular value      204 me
Singular value decomposition, singular value factorization      204
Singular value decomposition, singular vector      204 me
Singular value decomposition, uniqueness      205
Singular value factorization      see “Singular value decomposition”
Singular value, $\sigma_{i}(X)$ (the ith singular value of X)      204
Singular value, effects of rounding      211
Singular value, min-max characterization      206
Singular value, ordering convention      204
Singular value, perturbation theory      206 226—227
Singular value, perturbation theory, analogue of Rayleigh quotient      209
Singular value, perturbation theory, condition      206 me
Singular value, perturbation theory, first-order expansion      208
Singular value, perturbation theory, second-order expansion for small singular values      226
Singular vector      204
Singular vector and eigenvectors of the cross-product matrix      157 205
Singular vector, left      204
Singular vector, perturbation theory      206—210 226—227
Singular vector, perturbation theory, condition      209—210 me
Singular vector, perturbation theory, first-order expansion      208
Singular vector, perturbation theory, left singular vector      210
Singular vector, perturbation theory, right singular vector      210
Singular vector, perturbation theory, separation of singular values      210
Singular vector, right      204
Singular vector, right, and eigenvectors of the cross-product matrix      205
Skew Hermitian matrix      14
Skew Hermitian matrix, eigenvalues      14
Skew symmetric matrix      see “Skew Hermitian matrix”
Sleijpen, G.L.G.      296 346 420
Solution of projected systems      414—415
Solution of projected systems, ill conditioning      415
Solution of projected systems, multiple right-hand sides      414—415
Sorensen, D.C.      201 316 345 346 365
Sparse matrix      58 239
Spectral decomposition      13 158
Spectral decomposition and 2-norm      27
Spectral decomposition updating      171 201
Spectral decomposition updating, assessment      181
Spectral decomposition updating, basic algorithm      171
Spectral decomposition updating, computing eigenvectors      177—181
Spectral decomposition updating, computing eigenvectors, stability      179
Spectral decomposition updating, computing eigenvectors, the naive approach      177—178
Spectral decomposition updating, deflation      173—175
Spectral decomposition updating, deflation, tradeoffs      175
Spectral decomposition updating, operation count      179—181
Spectral decomposition updating, reduction to standard form      171—173
Spectral decomposition updating, reduction to standard form, accumulating transformations      173
Spectral decomposition updating, secular equation      175
Spectral decomposition updating, solving the secular equation      176—177
Spectral decomposition, effects of rounding      211—212
Spectral decomposition, updating      see “Spectral decomposition updating”
Spectral enhancement      64
Spectral enhancement, shift-and-invert enhancement      66 me
Spectral norm      see “Norm 2-norm”
Spectral projector      53
Spectral radius      31
Spectral radius, norm bounds      31—33 36
Spectral representation      see “Simple eigenspace”
Spectral transformation      379 (see also “Generalized shift-and-invert transformation”)
Spectrum      2
Spence, A.      380
SRR      see “Subspace iteration Schur
Stability in the ususal sense      87
Stathopoulos, A.      346
Steihaug, T.      419
Stewart, G.W.      24 52 155 156 237 264 265 295 316 345 346 394 395
Stewart, W.J.      395
Sturm sequence      170 202
Subspace iteration      381 382 394
Subspace iteration and QR algorithm      385
Subspace iteration, convergence testing      387—388
Subspace iteration, convergence testing, stability      388
Subspace iteration, convergence theory      383
Subspace iteration, convergence theory, Schur — Rayleigh — Ritz refinement      386
Subspace iteration, convergence theory, superiority to power method      384
Subspace iteration, convergence theory, to dominant subspaces      384
Subspace iteration, defectiveness      384
Subspace iteration, deflation      388
Subspace iteration, dependence in basis      382
Subspace iteration, freedom in dimension of the basis      384
Subspace iteration, general algorithm      386—387
Subspace iteration, orthogonalization      382 384—385
Subspace iteration, orthogonalization, frequent with shift and invert enhancement      390—391
Subspace iteration, orthogonalization, when to perform      389—391 393—394
Subspace iteration, Rayleigh — Ritz method      394
Subspace iteration, real Schur form      391
Subspace iteration, Schur — Rayleigh — Ritz refinement      382.386 394
Subspace iteration, Schur — Rayleigh — Ritz refinement, convergence      386 394
Subspace iteration, Schur — Rayleigh — Ritz refinement, when to perform      389 394
Subspace iteration, shift-and-invert enhancement      390
Subspace iteration, software      395
Subspace iteration, symmetric matrix      391
Subspace iteration, symmetric matrix, Chebyshev acceleration      392—394 395
Subspace iteration, symmetric matrix, economization of storage      391—392
Subspace iteration, Treppeniteration      394
Sun, J.-G.      52
SVD      see “Singular value decomposition”
Sylvester, J.J.      24 201
Sylvester’s equation      2 16 24 128
Sylvester’s equation, conditions for solution      16—17
Sylvester’s equation, Kronecker product form      24
Sylvester’s equation, numerical solution      18 24
Sylvester’s equation, Sylvester operator      16
Symmetric band matrix      186
Symmetric band matrix, band tridiagonalization      187—189 201
Symmetric band matrix, band tridiagonalization, limitations      189
Symmetric band matrix, band tridiagonalization, operation count      189
Symmetric band matrix, band tridiagonalization, stability      189
Symmetric band matrix, band width      186
Symmetric band matrix, computing eigenvalues and eigenvectors      186
Symmetric band matrix, eigenvectors      see “Eigenvectors of a symmetric band matrix”
Symmetric band matrix, pentadiagonal matrix      186
Symmetric band matrix, representation      187
Symmetric band matrix, storage      186
Symmetric matrix      see “Hermitian matrix”
Symmetric matrix, inertia      190 me
Symmetric matrix, representation      159
Symmetric matrix, representation, in two-dimensional arrays      159
Symmetric matrix, representation, packed storage      159
Symmetric matrix, simplifications in the QR algorithm      158
Symmetric matrix, special properties      157
Symmetric positive definite generalized eigenvalue problem      see “S/PD generalized eigenproblem”
Symmetric tridiagonal matrix      see “Tridiagonal matrix”
Systolic array      203
Tang, P.T.P.      201
Taussky, O.      52
Taylor, D.R.      367
Toumazou, V.      380
Trace as sum of eigenvalues      9
Trace(A) (trace of A)      422
Trace, invariance under similarity transformations      9
Trace, use in debugging      10
Trefethen, L.N.      23 37
Triangle inequlity      see “Norm”
Triangular matrix, computing eigenvectors      100—104
Triangular matrix, computing eigenvectors, operation count      102
Triangular matrix, computing eigenvectors, stability and residuals      102—104
Triangular matrix, computing left eigenvectors      104
Tridiagonal matrix      158 186
Tridiagonal matrix, assumed symmetric      158
Tridiagonal matrix, calculation of a selected eigenvalue      193—195 201—202
Tridiagonal matrix, calculation of a selected eigenvalue, accuracy      195
Tridiagonal matrix, calculation of a selected eigenvalue, use of fast root finders      195
Tridiagonal matrix, Givens’ reduction to      170
Tridiagonal matrix, Householder’s reduction to      159—162 170 189
Tridiagonal matrix, Householder’s reduction to, first column of the transformation      162
Tridiagonal matrix, Householder’s reduction to, operation count      162
Tridiagonal matrix, Householder’s reduction to, stability      162 170
Tridiagonal matrix, Householder’s reduction to, using symmetry      160
Tridiagonal matrix, Householder’s reduction to, Wilkinson’s contribution      170
Tridiagonal matrix, inertia      191—193
Tridiagonal matrix, inertia, operation count      192
Tridiagonal matrix, inertia, stability      192—193
Tridiagonal matrix, making a Hermitian matrix real      162—163
Tridiagonal matrix, representation      160
Tridiagonal QR algorithm      128 163 170—171
Tridiagonal QR algorithm, combination of Rayleigh quotient and Wilkinson shifts      170
Tridiagonal QR algorithm, deflation      168—169
Tridiagonal QR algorithm, detecting negligible off-diagonal elements      168—169 170
Tridiagonal QR algorithm, detecting negligible off-diagonal elements, graded matrix      169
Tridiagonal QR algorithm, explicitly shifted      164
Tridiagonal QR algorithm, graded matrix      169
Tridiagonal QR algorithm, graded matrix, QL algorithm      169 170
Tridiagonal QR algorithm, implicitly shifted QR step      164—167
Tridiagonal QR algorithm, implicitly shifted QR step, operation count      167
Tridiagonal QR algorithm, implicitly shifted QR step, PWK method      169 171
Tridiagonal QR algorithm, implicitly shifted QR step, stability      167
Tridiagonal QR algorithm, implicitly shifted QR step, variations      169
Tridiagonal QR algorithm, local convergence      167—168
Tridiagonal QR algorithm, Rayleigh quotient shift      167 170
Tridiagonal QR algorithm, Wilkinson shift      167 168 170
Twain, Mark      20
Underflow      see “Exponent exception”
Underwood, R.      280 367
Unitarily invariant norm      see “Norm”
Unitary matrix, eigenvalues      14
Unitary similarity      10
Unitary similarity, backward stability      10
Unreduced Hessenberg matrix      116
van der Vorst, H.A.      23 296 346 420
Van Loan, C.F.      23 24 237
Vector      421
Vector, component      421
Vector, unit      423
Vector, zero      423
von Neumann, J.      203
Vu, P.      345
Ward, R.C.      156
Watkins, D.S.      23 111 112 129 156 346
Weierstrass form      132
Weierstrass, K.      155
Wielandt, H.      70
Wilkinson      420
Wilkinson diagram      81 424
Wilkinson shift      see “Hessenberg QR algorithm” “QR “Tridiagonal
Wilkinson, J.H.      1 23 52 53 70 71 111—113 169 170 229 235 264 365 394 418
Wu, K.      346 365
Yang, C.      345
Zhang, Z.      170
|A| (absolute value of A)      423
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå