|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Schur decomposition and Jordan form 22 24
Schur decomposition by rowwise deflation 72
Schur decomposition, computation by explicit shift QR algorithm 98—100
Schur decomposition, computing eigevectors see “Triangular matrix computing
Schur decomposition, partial 407
Schur decomposition, Schur vector 12 me
Schur vector 12
Schur vector, relation to eigenvectors 12 15
Schur, I. 24
Schwarz, H.R. 201
Scott, D.S. 365 379
Scott, J.A. 395
Secular equation 24
Semidefinite B-Lanczos and Arnoldi algorithms 375—379 380
Semidefinite B-Lanczos and Arnoldi algorithms, assessment 379
Semidefinite B-Lanczos and Arnoldi algorithms, geometry 375—376
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error 376
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, defective matrix 380
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, effect on Rayleigh quotient 376
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, effect on Ritz vectors 376—377
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, growth 378 380
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, purging 378—379 380
Semidefinite B-Lanczos and Arnoldi algorithms, null-space error, rounding-error analysis 380
SEP 46 53—54 143 255
Sep and physical separation of eigenvalues 50—51 256
Sep, Hermitian matrices 51
Sep, properties 256
Shift-and-invert enhancement 66
Shift-and-invert enhancement, factorization 67
Shift-and-invert enhancement, solving linear systems 67—68
Similarity transformation 8
Similarity transformation, eigenvalues and eigenvectors 9
Similarity transformation, invariance of trace 9
Similarity transformation, unitary similarity 10
Simon, H. 346 365—367
Simple eigenspace 244 (see also “Eigenspace”)
Simple eigenspace, angles between right and left eigenespaces 251
Simple eigenspace, biorthogonal basis for left eigenspace 245
Simple eigenspace, block diagonalization 244—246
Simple eigenspace, block diagonalization, several eigenspaces 245—246
Simple eigenspace, complementary eigenspace 245
Simple eigenspace, corresponding left eigenspace 245
Simple eigenspace, deflation of an approximate eigenspace 254—255 265
Simple eigenspace, perturbation theory 265
Simple eigenspace, perturbation theory, accuracy of the Rayleigh quotient 260 265
Simple eigenspace, perturbation theory, alternate bound 265
Simple eigenspace, perturbation theory, bounds for eigenspace 261
Simple eigenspace, perturbation theory, bounds in terms of the error 259
Simple eigenspace, perturbation theory, condition of an eigenblock 260
Simple eigenspace, perturbation theory, condition of an eigenspace 261
Simple eigenspace, perturbation theory, main theorem 258
Simple eigenspace, perturbation theory, normalization of bases 259
Simple eigenspace, residual bounds 257
Simple eigenspace, residual bounds, limitations 257
Simple eigenspace, resolvent 247
Simple eigenspace, spectral projector 247
Simple eigenspace, spectral representation 245
Simple eigenspace, spectral representation, several eigenspaces 246
Simple eigenspace, spectral representation, standard representation 245
Simple eigenspace, uniqueness 246 247
Simpson 418
Singular value 204
Singular value and 2-norm 205
Singular value and eigenvalues of the cross-product matrix 157 205
Singular value and Frobenius norm 205
Singular value decomposition 55 204
Singular value decomposition and 2-norm 27
Singular value decomposition and spectral decomposition of cross-product matrix 205
Singular value decomposition, differential qd algorithm 228
Singular value decomposition, divide-and-conquer algorithms 228
Singular value decomposition, downdating 228
Singular value decomposition, history 226
Singular value decomposition, Jacobi methods 228—229
Singular value decomposition, Jacobi methods, one-sided method 229
Singular value decomposition, Jacobi methods, two-sided method of Kogbetliantz 228
Singular value decomposition, Lanczos algorithm 366—367
Singular value decomposition, singular value 204 me
Singular value decomposition, singular value factorization 204
Singular value decomposition, singular vector 204 me
Singular value decomposition, uniqueness 205
Singular value factorization see “Singular value decomposition”
Singular value, (the ith singular value of X) 204
Singular value, effects of rounding 211
Singular value, min-max characterization 206
Singular value, ordering convention 204
Singular value, perturbation theory 206 226—227
Singular value, perturbation theory, analogue of Rayleigh quotient 209
Singular value, perturbation theory, condition 206 me
Singular value, perturbation theory, first-order expansion 208
Singular value, perturbation theory, second-order expansion for small singular values 226
Singular vector 204
Singular vector and eigenvectors of the cross-product matrix 157 205
Singular vector, left 204
Singular vector, perturbation theory 206—210 226—227
Singular vector, perturbation theory, condition 209—210 me
Singular vector, perturbation theory, first-order expansion 208
Singular vector, perturbation theory, left singular vector 210
Singular vector, perturbation theory, right singular vector 210
Singular vector, perturbation theory, separation of singular values 210
Singular vector, right 204
Singular vector, right, and eigenvectors of the cross-product matrix 205
Skew Hermitian matrix 14
Skew Hermitian matrix, eigenvalues 14
Skew symmetric matrix see “Skew Hermitian matrix”
Sleijpen, G.L.G. 296 346 420
Solution of projected systems 414—415
Solution of projected systems, ill conditioning 415
Solution of projected systems, multiple right-hand sides 414—415
Sorensen, D.C. 201 316 345 346 365
Sparse matrix 58 239
Spectral decomposition 13 158
Spectral decomposition and 2-norm 27
Spectral decomposition updating 171 201
Spectral decomposition updating, assessment 181
Spectral decomposition updating, basic algorithm 171
Spectral decomposition updating, computing eigenvectors 177—181
Spectral decomposition updating, computing eigenvectors, stability 179
Spectral decomposition updating, computing eigenvectors, the naive approach 177—178
Spectral decomposition updating, deflation 173—175
Spectral decomposition updating, deflation, tradeoffs 175
Spectral decomposition updating, operation count 179—181
Spectral decomposition updating, reduction to standard form 171—173
Spectral decomposition updating, reduction to standard form, accumulating transformations 173
Spectral decomposition updating, secular equation 175
Spectral decomposition updating, solving the secular equation 176—177
Spectral decomposition, effects of rounding 211—212
Spectral decomposition, updating see “Spectral decomposition updating”
Spectral enhancement 64
Spectral enhancement, shift-and-invert enhancement 66 me
Spectral norm see “Norm 2-norm”
Spectral projector 53
Spectral radius 31
Spectral radius, norm bounds 31—33 36
Spectral representation see “Simple eigenspace”
Spectral transformation 379 (see also “Generalized shift-and-invert transformation”)
Spectrum 2
Spence, A. 380
SRR see “Subspace iteration Schur
| Stability in the ususal sense 87
Stathopoulos, A. 346
Steihaug, T. 419
Stewart, G.W. 24 52 155 156 237 264 265 295 316 345 346 394 395
Stewart, W.J. 395
Sturm sequence 170 202
Subspace iteration 381 382 394
Subspace iteration and QR algorithm 385
Subspace iteration, convergence testing 387—388
Subspace iteration, convergence testing, stability 388
Subspace iteration, convergence theory 383
Subspace iteration, convergence theory, Schur — Rayleigh — Ritz refinement 386
Subspace iteration, convergence theory, superiority to power method 384
Subspace iteration, convergence theory, to dominant subspaces 384
Subspace iteration, defectiveness 384
Subspace iteration, deflation 388
Subspace iteration, dependence in basis 382
Subspace iteration, freedom in dimension of the basis 384
Subspace iteration, general algorithm 386—387
Subspace iteration, orthogonalization 382 384—385
Subspace iteration, orthogonalization, frequent with shift and invert enhancement 390—391
Subspace iteration, orthogonalization, when to perform 389—391 393—394
Subspace iteration, Rayleigh — Ritz method 394
Subspace iteration, real Schur form 391
Subspace iteration, Schur — Rayleigh — Ritz refinement 382.386 394
Subspace iteration, Schur — Rayleigh — Ritz refinement, convergence 386 394
Subspace iteration, Schur — Rayleigh — Ritz refinement, when to perform 389 394
Subspace iteration, shift-and-invert enhancement 390
Subspace iteration, software 395
Subspace iteration, symmetric matrix 391
Subspace iteration, symmetric matrix, Chebyshev acceleration 392—394 395
Subspace iteration, symmetric matrix, economization of storage 391—392
Subspace iteration, Treppeniteration 394
Sun, J.-G. 52
SVD see “Singular value decomposition”
Sylvester, J.J. 24 201
Sylvester’s equation 2 16 24 128
Sylvester’s equation, conditions for solution 16—17
Sylvester’s equation, Kronecker product form 24
Sylvester’s equation, numerical solution 18 24
Sylvester’s equation, Sylvester operator 16
Symmetric band matrix 186
Symmetric band matrix, band tridiagonalization 187—189 201
Symmetric band matrix, band tridiagonalization, limitations 189
Symmetric band matrix, band tridiagonalization, operation count 189
Symmetric band matrix, band tridiagonalization, stability 189
Symmetric band matrix, band width 186
Symmetric band matrix, computing eigenvalues and eigenvectors 186
Symmetric band matrix, eigenvectors see “Eigenvectors of a symmetric band matrix”
Symmetric band matrix, pentadiagonal matrix 186
Symmetric band matrix, representation 187
Symmetric band matrix, storage 186
Symmetric matrix see “Hermitian matrix”
Symmetric matrix, inertia 190 me
Symmetric matrix, representation 159
Symmetric matrix, representation, in two-dimensional arrays 159
Symmetric matrix, representation, packed storage 159
Symmetric matrix, simplifications in the QR algorithm 158
Symmetric matrix, special properties 157
Symmetric positive definite generalized eigenvalue problem see “S/PD generalized eigenproblem”
Symmetric tridiagonal matrix see “Tridiagonal matrix”
Systolic array 203
Tang, P.T.P. 201
Taussky, O. 52
Taylor, D.R. 367
Toumazou, V. 380
Trace as sum of eigenvalues 9
Trace(A) (trace of A) 422
Trace, invariance under similarity transformations 9
Trace, use in debugging 10
Trefethen, L.N. 23 37
Triangle inequlity see “Norm”
Triangular matrix, computing eigenvectors 100—104
Triangular matrix, computing eigenvectors, operation count 102
Triangular matrix, computing eigenvectors, stability and residuals 102—104
Triangular matrix, computing left eigenvectors 104
Tridiagonal matrix 158 186
Tridiagonal matrix, assumed symmetric 158
Tridiagonal matrix, calculation of a selected eigenvalue 193—195 201—202
Tridiagonal matrix, calculation of a selected eigenvalue, accuracy 195
Tridiagonal matrix, calculation of a selected eigenvalue, use of fast root finders 195
Tridiagonal matrix, Givens’ reduction to 170
Tridiagonal matrix, Householder’s reduction to 159—162 170 189
Tridiagonal matrix, Householder’s reduction to, first column of the transformation 162
Tridiagonal matrix, Householder’s reduction to, operation count 162
Tridiagonal matrix, Householder’s reduction to, stability 162 170
Tridiagonal matrix, Householder’s reduction to, using symmetry 160
Tridiagonal matrix, Householder’s reduction to, Wilkinson’s contribution 170
Tridiagonal matrix, inertia 191—193
Tridiagonal matrix, inertia, operation count 192
Tridiagonal matrix, inertia, stability 192—193
Tridiagonal matrix, making a Hermitian matrix real 162—163
Tridiagonal matrix, representation 160
Tridiagonal QR algorithm 128 163 170—171
Tridiagonal QR algorithm, combination of Rayleigh quotient and Wilkinson shifts 170
Tridiagonal QR algorithm, deflation 168—169
Tridiagonal QR algorithm, detecting negligible off-diagonal elements 168—169 170
Tridiagonal QR algorithm, detecting negligible off-diagonal elements, graded matrix 169
Tridiagonal QR algorithm, explicitly shifted 164
Tridiagonal QR algorithm, graded matrix 169
Tridiagonal QR algorithm, graded matrix, QL algorithm 169 170
Tridiagonal QR algorithm, implicitly shifted QR step 164—167
Tridiagonal QR algorithm, implicitly shifted QR step, operation count 167
Tridiagonal QR algorithm, implicitly shifted QR step, PWK method 169 171
Tridiagonal QR algorithm, implicitly shifted QR step, stability 167
Tridiagonal QR algorithm, implicitly shifted QR step, variations 169
Tridiagonal QR algorithm, local convergence 167—168
Tridiagonal QR algorithm, Rayleigh quotient shift 167 170
Tridiagonal QR algorithm, Wilkinson shift 167 168 170
Twain, Mark 20
Underflow see “Exponent exception”
Underwood, R. 280 367
Unitarily invariant norm see “Norm”
Unitary matrix, eigenvalues 14
Unitary similarity 10
Unitary similarity, backward stability 10
Unreduced Hessenberg matrix 116
van der Vorst, H.A. 23 296 346 420
Van Loan, C.F. 23 24 237
Vector 421
Vector, component 421
Vector, unit 423
Vector, zero 423
von Neumann, J. 203
Vu, P. 345
Ward, R.C. 156
Watkins, D.S. 23 111 112 129 156 346
Weierstrass form 132
Weierstrass, K. 155
Wielandt, H. 70
Wilkinson 420
Wilkinson diagram 81 424
Wilkinson shift see “Hessenberg QR algorithm” “QR “Tridiagonal
Wilkinson, J.H. 1 23 52 53 70 71 111—113 169 170 229 235 264 365 394 418
Wu, K. 346 365
Yang, C. 345
Zhang, Z. 170
|A| (absolute value of A) 423
|
|
|
Ðåêëàìà |
|
|
|