Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Matrix algorithms. Volume 2: Eigensystems

Àâòîð: Stewart G.W.

Àííîòàöèÿ:

This book is the second volume in a projected five-volume survey of numerical linear algebra and matrix algorithms. This volume treats the numerical solution of dense and large-scale eigenvalue problems with an emphasis on algorithms and the theoretical background required to understand them. Stressing depth over breadth, Professor Stewart treats the derivation and implementation of the more important algorithms in detail. The notes and references sections contain pointers to other methods along with historical comments.

The book is divided into two parts: dense eigenproblems and large eigenproblems. The first part gives a full treatment of the widely used QR algorithm, which is then applied to the solution of generalized eigenproblems and the computation of the singular value decomposition. The second part treats Krylov sequence methods such as the Lanczos and Arnoldi algorithms and presents a new treatment of the Jacobi-Davidson method.

The volumes in this survey are not intended to be encyclopedic. By treating carefully selected topics in depth, each volume gives the reader the theoretical and practical background to read the research literature and implement or modify new algorithms. The algorithms treated are illustrated by pseudocode that has been tested in MATLAB implementations.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 469

Äîáàâëåíà â êàòàëîã: 23.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Moon, Y.S.      236
More, J.J.      265
Morgan, R.B.      296 345
Multiple eigenvalue      2
Multiple eigenvalue, algebraic multiplicity      4 6 12
Multiple eigenvalue, geometric multiplicity      6 12
Multiset      2
Murray, F.J.      203
Nash, S.      24
Newton, I.      418
Newton-based methods      381
Newton’s method      395
Newton’s method, application to eigenproblem      418—419
Newton’s method, derivation by perturbation expansion      395—396
Newton’s method, history      418
Newton’s method, relation to Rayleigh quotient method      418
Newton’s method, relation to the QR algorithm      403 418—419
Nielsen, C.P.      201
Nilpotent matrix      12—13
Nonnormal matrix      71
Norm      25 36
Norm and spectral radius      31—33 36
Norm, $\infty$-norm      26 27
Norm, 1-norm      26 27
Norm, 2-norm, and Frobenius norm      27
Norm, 2-norm, and largest singular value      205
Norm, 2-norm, matrix norm      27
Norm, 2-norm, of orthonormal matrix      27
Norm, 2-norm, properties      27
Norm, 2-norm, unitary invariance      27
Norm, 2-norm, vector norm      26
Norm, absolute norm      28
Norm, absolute norm, examples      28
Norm, compatable norm      36
Norm, consistent norm      29 36
Norm, consistent norm, consistent vector norm      29—30
Norm, consistent norm, construction by similarities      30
Norm, consistent norm, examples      29
Norm, equivalence of norms      30
Norm, Euclidean norm      26
Norm, family of norms      26
Norm, Frobenius norm      26
Norm, Frobenius norm, and 2-norm      27
Norm, Frobenius norm, and singular values      205
Norm, Frobenius norm, trace characterization      26
Norm, Frobenius norm, unitary invariance      27
Norm, limitations      28 33 35—36 43
Norm, matrix norm      25
Norm, operator norm      27
Norm, rounding a matrix      28
Norm, spectral norm      see “Norm 2-norm”
Norm, subordinate norm      27
Norm, triangle inequality      26
Norm, unitarily invariant norm      27
Norm, vector norm      26
Normal matrix      14
Normal matrix, eigenvalues      14
Normal matrix, eigenvectors      14
Nour-Omid, B.      347 380
Null space $\mathcal{N}(X)$      424
Nullity [null(A)]      424
Oettli, W.      70
Olsen, J.      419
Operation count, application of a plane rotation      91
Operation count, Arnoldi process      304
Operation count, balancing      108
Operation count, band tridiagonalization      189
Operation count, basic QR step in Hessenberg QR algorithm      92
Operation count, bidiagonal QR step      220
Operation count, complex arithmetic      86—87
Operation count, deflation by inspection      107
Operation count, divide-and-conquer algorithm for the spectral decomposition      185
Operation count, divide-and-conquer algorithms      181—182
Operation count, eigenvectors of a triangular matrix      102
Operation count, explicit shift Hessenberg QR algorithm      100
Operation count, Householder reduction to Hesssenberg form      86
Operation count, Householder-matrix product      82
Operation count, hybrid QRD-SVD algorithm      226
Operation count, implicit double shift QR step      123
Operation count, implicit tridiagonal QR step      167
Operation count, implicitly restarted Arnoldi      320—323
Operation count, inertia of a tridiagonal matrix      192
Operation count, Jacobi — Davidson method      409
Operation count, Krylov — Schur restarting      329
Operation count, Lanczos recurrence      308
Operation count, QZ algorithm      150—152
Operation count, reduction to bidiagonal form      217
Operation count, reduction to Hessenberg-triangular form      147
Operation count, reduction to tridiagonal form      162
Operation count, spectral decomposition updating      179—181
Operation count, Wilkinson’s algorithm for S/PD eigenproblem      232
Orthogonal similarity      see “Unitary similarity”
Osborne, E.E.      112
Ostrowski, A.M.      36 71
Overflow      see “Exponent exception”
Paige, C.C.      237 280 296 315 366
Parlett, B.N.      24 169 170 228 265 279 295 296 346 347 365 367 379 380
Pencil      see “Generalized eigenvalue problem”
Pentadiagonal matrix      186
Perturbation theory      see “Eigenpair” “Eigenvalue” “Eigenvector” “Generalized “Hermitian “Relative “Simple “Singular “S/PD
Peters, G.      418 420
Petrov method      see “Rayleigh — Ritz method”
Plane rotation      88 111
Plane rotation and Wilkinson diagrams      91
Plane rotation in the (i,j)-plane      88
Plane rotation, application      89—91
Plane rotation, application, operation count      91
Plane rotation, application, pre- and postmultiplication      91
Plane rotation, exponent exception      89
Plane rotation, generation      89
Plane rotation, introducing a zero into a 2-vector      88
Plane rotation, introducing a zero into a matrix      88—89
Plane rotations, Givens’ method      170
Positive definite matrix      425
Positive semidefinite matrix      425
Powell, M.J.D.      70
Power method      56 69—70 266 381
Power method, assessment      66
Power method, choice of starting vector      58 60
Power method, convergence      57
Power method, convergence criteria      60—62
Power method, deflation      70
Power method, effects of rounding error      65
Power method, implementation      64
Power method, Markov chain      69
Power method, normalization      59
Power method, operation counts      58—59
Power method, rate of convergence      58
Power method, Rayleigh quotients      63
Power method, shifting      64 70
Power method, with two vectors      381—382
Prager, W.      70
Primitive Ritz vector      see “Rayleigh — Ritz method”
Principal vector      see “Jordan canonical form”
Projector      427
Proper value      24
Pseudospectrum      36—37
qd-algorithm      110
QL algorithm      see “QR algorithm”
QR algorithm      1 24 55 394 396 “Hessenberg “QZ “Subspace “Tridiagonal
QR algorithm as factorization of a polynomial      76
QR algorithm, convergence      111
QR algorithm, convergence, alternate shifts      75
QR algorithm, convergence, cubic      75
QR algorithm, convergence, error bounds for a QR step      73—74
QR algorithm, convergence, multiple eigenvalues      75
QR algorithm, convergence, quadratic      75
QR algorithm, convergence, unshifted algorithm      77—80
QR algorithm, history      110
QR algorithm, impracticality on a full matrix      80—81
QR algorithm, QL algorithm      111 113 169 170
QR algorithm, QR step      71
QR algorithm, Rayleigh quotient shift      73
QR algorithm, relation to inverse power method      72—73 111
QR algorithm, relation to Newton’s method      403 418—419
QR algorithm, relation to power method      72 77 111
QR algorithm, shifted      71
QR algorithm, unshifted      77—80
QR algorithm, unshifted, convergence to Schur decomposition      78—79
QR algorithm, unshifted, disorder in eigenvalues      79
QR algorithm, unshifted, equimodular eigenvalues      80
QR algorithm, unshifted, implications for the shifted algorithm      80
QR algorithm, unshifted, rates of convergence      80
QR algorithm, variants (RQ, QL, LQ)      111 113 169 170 418
QR algorithm, Wilkinson shift      75
QR decomposition      426—427
QR decomposition and QR algorithm      110
QR step      see “QR algorithm”
Quasi-triangular matrix      115
Quasi-triangular matrix, computing eigenvectors      126—128
QZ algorithm      147—148 156
QZ algorithm, $2\times2$ blocks      155
QZ algorithm, choice of double shift      148
QZ algorithm, computation of eigenvectors      155
QZ algorithm, deflation      150 153
QZ algorithm, eigenvalues only      152
QZ algorithm, operation count      150—152
QZ algorithm, QZ step      148—152
QZ algorithm, real shifts      156
QZ algorithm, stability      152
QZ algorithm, starting the double shift      148
QZ algorithm, treatment of infinite eigenvalues      153—155 156
Rank      424
Raphson      418
Rational Krylov transformation      342—344 347
Rational Krylov transformation, no free lunch      343—344
Rational Krylov transformation, potential instability      343
Rayleigh (J.W. Strutt)      70 295
Rayleigh quotient      47 63 70
Rayleigh quotient and optimal residuals      70
Rayleigh quotient for generalized eigenvalue problem      136 138
Rayleigh quotient for subspaces      252
Rayleigh quotient in Arnoldi decomposition      301
Rayleigh quotient in Krylov decomposition      309
Rayleigh quotient in Lanczos decomposition      306
Rayleigh quotient method      69 71 396
Rayleigh quotient method, quadratic convergence      69
Rayleigh quotient method, relation to Newton’s method      418
Rayleigh quotient shift      see “QR algorithm”
Rayleigh quotient, accuracy of      260
Rayleigh — Ritz method      252 280 381 396
Rayleigh — Ritz method and Lanczos algorithm      348
Rayleigh — Ritz method as a generalized eigenvalue problem      283
Rayleigh — Ritz method, choosing a primitive Ritz basis      282
Rayleigh — Ritz method, convergence      284 295
Rayleigh — Ritz method, convergence, Hermitian matrix      286—288
Rayleigh — Ritz method, convergence, residual      289
Rayleigh — Ritz method, convergence, Ritz blocks and bases      288
Rayleigh — Ritz method, convergence, Ritz value      285—287
Rayleigh — Ritz method, convergence, Ritz vector      286—287
Rayleigh — Ritz method, convergence, uniform separation condition      287
Rayleigh — Ritz method, exact eigenspace      281
Rayleigh — Ritz method, failure      282—283
Rayleigh — Ritz method, Galerkin method      295—296
Rayleigh — Ritz method, general procedure      281
Rayleigh — Ritz method, harmonic Rayleigh — Ritz method      293 me
Rayleigh — Ritz method, history      295
Rayleigh — Ritz method, oblique      283
Rayleigh — Ritz method, optimal residual      284
Rayleigh — Ritz method, orthogonal      284
Rayleigh — Ritz method, Petrov method      295—296
Rayleigh — Ritz method, primitive Ritz basis      282
Rayleigh — Ritz method, primitive Ritz vector      282
Rayleigh — Ritz method, projection method      295
Rayleigh — Ritz method, residual bound      288
Rayleigh — Ritz method, Ritz basis      282
Rayleigh — Ritz method, Ritz block      282
Rayleigh — Ritz method, Ritz pair      282
Rayleigh — Ritz method, Ritz space      282
Rayleigh — Ritz method, Ritz value      282
Rayleigh — Ritz method, Ritz vector      282
Rayleigh — Ritz method, separation condition      283
Rayleigh — Ritz method, two levels of approximation      280—281
Real matrix, eigenvectors      5—6
Real matrix, perturbation of simple eigenvalue      38
Real Schur form      113 126 128
Real Schur form in subspace iteration      391
Real Schur form, computation by double shift QR algorithm      123—126
Real Schur form, computation by Householder transformation      115
Real Schur form, computing eigenvectors      126—128
Refined Ritz vector      289 295—296
Refined Ritz vector, computation      291—292
Refined Ritz vector, computation, basic algorithm      291
Refined Ritz vector, computation, compared with Ritz vector      291
Refined Ritz vector, computation, cross-product algorithm      291—292 296
Refined Ritz vector, computation, from Krylov decomposition      314
Refined Ritz vector, convergence      289—290
Refined Ritz vector, use of Rayleigh quotient      290
Reid, J.K.      156
Reinsch, C.      113
Relative and structured perturbation theory      54
Relative error      28
Relative error in eigenvalues      43 231
Relative error, normwise      28
Representation of symmetric matrices      159
Representation of symmetric matrices in two-dimensional arrays      159
Representation of symmetric matrices, packed storage      159
Residual      61
Residual, backward error      61 70 253 265
Residual, computation in the inverse power method      66—67
Residual, convergence testing      62 195—196
Residual, optimal      63 252 264
Resolvent      247
Reverse communication      345
Rigal, J.L.      380
Right eigenpair      2
Ritz pair      see “Rayleigh — Ritz method”
Ritz, W.      295
Rounding unit $(\varepsilon_{M})$      27
Row orientation      see “Column- and row-oriented algorithms”
Ruhe, A.      23 295 347 367 379 380
Rutishauser, H.      110 203 394 395
S/PD generalized eigenproblem      157 229
S/PD generalized eigenproblem, B-orthogonality      230
S/PD generalized eigenproblem, banded problems      235
S/PD generalized eigenproblem, Chandrasekaran’s method      235
S/PD generalized eigenproblem, congruence transformation      229
S/PD generalized eigenproblem, diagonalization by congruences      229
S/PD generalized eigenproblem, eigenvalue      230
S/PD generalized eigenproblem, eigenvalue, condition number      231
S/PD generalized eigenproblem, eigenvalue, ill conditioned      231
S/PD generalized eigenproblem, eigenvalue, projective representation      231
S/PD generalized eigenproblem, eigenvalue, well conditioned eigenvalues not determined to high relative accuracy      231
S/PD generalized eigenproblem, eigenvector      230
S/PD generalized eigenproblem, generalized shift and invert transformation      370
S/PD generalized eigenproblem, ill-conditioned B      233—235
S/PD generalized eigenproblem, ill-conditioned B, use of pivoted Cholesky decomposition of B      234
S/PD generalized eigenproblem, ill-conditioned B, use of spectral decomposition of B      234
S/PD generalized eigenproblem, no infinite eigenvalues      230
S/PD generalized eigenproblem, perturbation theory      231 234—235
S/PD generalized eigenproblem, product problem (AB)      235
S/PD generalized eigenproblem, S/PD pencil      229
S/PD generalized eigenproblem, Wilkinson’s algorithm      231—233 235
S/PD generalized eigenproblem, Wilkinson’s algorithm, computation of $R^{-T}AR^{-1}$      232—233
S/PD generalized eigenproblem, Wilkinson’s algorithm, operation count      232
S/PD generalized eigenproblem, Wilkinson’s algorithm, storage and overwriting      232
Saad, Y.      23 279 280 295 344—347
scalar      421
Schnabel, R.B.      418
Schur decomposition      1 10—12 24 55 71
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå