Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Matrix algorithms. Volume 2: Eigensystems

Àâòîð: Stewart G.W.

Àííîòàöèÿ:

This book is the second volume in a projected five-volume survey of numerical linear algebra and matrix algorithms. This volume treats the numerical solution of dense and large-scale eigenvalue problems with an emphasis on algorithms and the theoretical background required to understand them. Stressing depth over breadth, Professor Stewart treats the derivation and implementation of the more important algorithms in detail. The notes and references sections contain pointers to other methods along with historical comments.

The book is divided into two parts: dense eigenproblems and large eigenproblems. The first part gives a full treatment of the widely used QR algorithm, which is then applied to the solution of generalized eigenproblems and the computation of the singular value decomposition. The second part treats Krylov sequence methods such as the Lanczos and Arnoldi algorithms and presents a new treatment of the Jacobi-Davidson method.

The volumes in this survey are not intended to be encyclopedic. By treating carefully selected topics in depth, each volume gives the reader the theoretical and practical background to read the research literature and implement or modify new algorithms. The algorithms treated are illustrated by pseudocode that has been tested in MATLAB implementations.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 469

Äîáàâëåíà â êàòàëîã: 23.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Divide-and-conquer algorithm for the spectral decomposition, depth of the recursion      183 185
Divide-and-conquer algorithm for the spectral decomposition, error analysis      201
Divide-and-conquer algorithm for the spectral decomposition, generalities      181—182
Divide-and-conquer algorithm for the spectral decomposition, operation count      185
Divide-and-conquer algorithm for the spectral decomposition, recursive vs. direct approach      183
Divide-and-conquer algorithm for the spectral decomposition, stability      183
Divide-and-conquer algorithm for the spectral decomposition, the effects of deflation      185
Divide-and-conquer algorithm for the spectral decomposition, unsuitability for graded matrices      183
Divide-and-conquer algorithms      181—182
Dominant eigenpair      31
Dominant eigenvalue      31
Dominant eigenvalue, defective      34
Dominant eigenvector      31
Dominant eigenvector, power method      56
Donath, W.E.      280 367
Dongarra, J.J.      23 201
Duff, I.S.      395
Eigenbasis      see “Eigenspace”
Eigenblock      see “Eigenspace”
Eigenpair      2 24
Eigenpair, complete system      7 me
Eigenpair, diagonal matrix      3
Eigenpair, dominant      31 me
Eigenpair, eigenvalue      2
Eigenpair, eigenvector      2
Eigenpair, left      2
Eigenpair, normalization      2
Eigenpair, perturbation theory, first-order      45—46 53
Eigenpair, perturbation theory, rigorous bounds      46—47 53
Eigenpair, real matrix      5—6
Eigenpair, right      2
Eigenpair, simple      8
Eigenpair, singular matrix      3
Eigenpair, triangular matrix      3
Eigenspace      22 115 240 247
Eigenspace, deflation      243
Eigenspace, deflation, nonorthogonal      243
Eigenspace, eigenbasis      127 242
Eigenspace, eigenblock      242
Eigenspace, eigenpair      242
Eigenspace, eigenpair, behavior under similarity transformations      242
Eigenspace, eigenpair, left      242
Eigenspace, eigenpair, orthonormal      242
Eigenspace, eigenpair, right      242
Eigenspace, examples      240
Eigenspace, existence      242
Eigenspace, left      242
Eigenspace, left, as orthogonal complement of right eigenspace      243
Eigenspace, nonuniqueness      244
Eigenspace, representation by a basis      240—241
Eigenspace, representation of A with respect to a basis      241
Eigenspace, residual      251 334—335
Eigenspace, residual bounds for eigenspaces of Hermitian matrices      262—263 265
Eigenspace, residual bounds for eigenvalues of Hermitian matrices      254 263—264 265
Eigenspace, residual, backward error      253 265
Eigenspace, residual, optimal      252 264
Eigenspace, simple      244 me
Eigenvalue      2 (see also “Eigenpair” “Hermitian “Similarity
Eigenvalue, algebraic multiplicity      4 6 12
Eigenvalue, block triangular matrix      5
Eigenvalue, characteristic equation      4 me
Eigenvalue, characteristic polynomial      4 me
Eigenvalue, continuity      37—38
Eigenvalue, defective      7 me
Eigenvalue, diagonal matrix      3
Eigenvalue, dominant      31 me
Eigenvalue, Eisner’s theorem      38 52
Eigenvalue, geometric multiplicity      6 12
Eigenvalue, Gerschgorin’s theorem      39 me
Eigenvalue, Hermitian matrix      13
Eigenvalue, history and nomenclature      23—24
Eigenvalue, multiple      2 me
Eigenvalue, nilpotent matrix      12—13
Eigenvalue, normal matrix      14
Eigenvalue, perturbation theory      52
Eigenvalue, perturbation theory, condition      48 me
Eigenvalue, perturbation theory, derivatives      47
Eigenvalue, perturbation theory, first-order      45—46 53
Eigenvalue, perturbation theory, rigorous bounds      46—47 53
Eigenvalue, perturbation theory, simple eigenvalue      38
Eigenvalue, simple      8
Eigenvalue, singular matrix      3
Eigenvalue, skew Hermitian matrix      14
Eigenvalue, triangular matrix      3
Eigenvalue, unitary matrix      14
Eigenvector      2 (see also “Eigenpair” “Hermitian “Similarity
Eigenvector, complete system      7 me
Eigenvector, computing eigenvectors      100
Eigenvector, diagonal matrix      3
Eigenvector, dominant      31 me
Eigenvector, Hermitian matrix      13
Eigenvector, history and nomenclature      23—24
Eigenvector, left      4
Eigenvector, left and right      44 52—53
Eigenvector, normal matrix      14
Eigenvector, normalization      2
Eigenvector, null space characterization      6
Eigenvector, perturbation theory, condition      48—50 me
Eigenvector, perturbation theory, first-order      45—46 53
Eigenvector, perturbation theory, rigorous bounds      46—47 53
Eigenvector, real matrix      5—6
Eigenvector, right      4
Eigenvector, simple      8
Eigenvector, singular matrix      3
Eigenvector, triangular matrix      3
Eigenvectors of a symmetric band matrix      195—200 202
Eigenvectors of a symmetric band matrix, attaining a small residual      196—197
Eigenvectors of a symmetric band matrix, convergence      198—200
Eigenvectors of a symmetric band matrix, limitations of the algorithm      200
Eigenvectors of a symmetric band matrix, loss of orthogonality      197
Eigenvectors of a symmetric band matrix, orthogonalization      197—198
Eigenvectors of a symmetric band matrix, orthogonalization, Gram — Schmidt algorithm      198
Eigenvectors of a symmetric band matrix, orthogonalization, tradeoffs in clustering      200
Eigenvectors of a symmetric band matrix, residual      195—196
Eigenvectors of a symmetric band matrix, solution of inverse power equation      200
Eigenvectors of a symmetric band matrix, starting vector      200
Eisenstat, S.C.      201 228 419
Eisner, L.      52 111
Eisner’s theorem      38 52 285
EISPACK, $2\times2$ blocks in QZ algorithm      156
EISPACK, eigenvalues by bisection      202
Elementary reflector      see “Householder transformation”
Ericsson, T.      347 379 380
Exchanging eigenblocks      326—328 345—346
Exchanging eigenblocks, stability      328
Exponent exception, computing bidiagonal QR shift      223
Exponent exception, computing inertia      193
Exponent exception, eigenvector computation      102
Exponent exception, implicit double shift      119
Exponent exception, plane rotation      89
Factorization      67
Fernando, K.V.      228
Filter polynomial      317 345
Filter polynomial in Arnoldi method      317
Filter polynomial in Lanczos algorithm      352 365
Filter polynomial, Chebyshev polynomial      317 365
Filter polynomial, Leja points      365
Filter polynomial, Ritz values as roots      317
Fischer’s theorem      41
fl (floating-point evaluation)      27
Flam (floating-point add and multiply)      58
Flam (floating-point add and multiply) in complex arithmetic      86—87
Flrot      91
Fokkema, D.R.      346
Francis, J.G.F.      110—112 128 170
Fraysse, V.      380
Freund, R.W.      296
Frobenius norm      see “Norm”
Gaches, J.      380
Galerkin method      see “Rayleigh — Ritz method”
Gaussian elimination      157
Gaussian elimination and inertia      191
Gaussian elimination, band matrix      200
Generalized eigenvalue problem      129 296
Generalized eigenvalue problem, background      155
Generalized eigenvalue problem, characteristic polynomial      133
Generalized eigenvalue problem, chordal distance      138 155
Generalized eigenvalue problem, eigenpair      130
Generalized eigenvalue problem, eigenpair, left      130
Generalized eigenvalue problem, eigenpair, perturbation of      136—137
Generalized eigenvalue problem, eigenpair, right      130
Generalized eigenvalue problem, eigenvalue      130
Generalized eigenvalue problem, eigenvalue, algebraic multiplicity      133
Generalized eigenvalue problem, eigenvalue, condition      140
Generalized eigenvalue problem, eigenvalue, first-order expansion      137
Generalized eigenvalue problem, eigenvalue, perturbation bound      140
Generalized eigenvalue problem, eigenvalue, projective representation      134 231
Generalized eigenvalue problem, eigenvector      130
Generalized eigenvalue problem, eigenvector, condition      143
Generalized eigenvalue problem, eigenvector, first-order expansion      141—142
Generalized eigenvalue problem, eigenvector, perturbation bound      142—143
Generalized eigenvalue problem, equivalence transformation      131
Generalized eigenvalue problem, equivalence transformation, effect on eigenvalues and eigenvectors      132
Generalized eigenvalue problem, generalized Schur form      132 me
Generalized eigenvalue problem, generalized shift-and-invert transform      368 me
Generalized eigenvalue problem, Hessenberg-triangular form      144—147 me
Generalized eigenvalue problem, infinite eigenvalue      131
Generalized eigenvalue problem, infinite eigenvalue, algebraic multiplicity      133
Generalized eigenvalue problem, infinite eigenvalue, condition      140
Generalized eigenvalue problem, nonregular pencils      130—131
Generalized eigenvalue problem, pencil      130
Generalized eigenvalue problem, perturbation theory      136 155 eigenpair” “Generalized eigenvalue” “Generalized eigenvector”)
Generalized eigenvalue problem, QZ algorithm      147—148 me
Generalized eigenvalue problem, Rayleigh quotient      136 138
Generalized eigenvalue problem, real generalized Schur form      143 me
Generalized eigenvalue problem, reduction to ordinary eigenproblem      134 368—369
Generalized eigenvalue problem, regular pair      131
Generalized eigenvalue problem, regular pencil      131
Generalized eigenvalue problem, residual      369
Generalized eigenvalue problem, residual, backward error      369 380
Generalized eigenvalue problem, right and left eigenvectors      135
Generalized eigenvalue problem, shifted pencil      134—135
Generalized eigenvalue problem, simple eigenvalue      133
Generalized eigenvalue problem, Weierstrass form      132
Generalized Schur form      55 132 155
Generalized Schur form, order of eigenvalues      133
Generalized Schur form, real generalized Schur form      143
Generalized shift-and-invert transform      368 379—380
Generalized shift-and-invert transform, bounding the residual      370
Generalized shift-and-invert transform, matrix-vector product      369
Generalized shift-and-invert transform, S/PD pencils      370
Generalized singular value decomposition      236—237
Generalized singular value decomposition, computation via the CS decomposition      236—237
Generalized singular value decomposition, relation to the S/PD eigenproblem      236
Geometric multiplicity      see “Eigenvalue”
Gerschgorin, S.A.      52
Gerschgorin’s theorem      39 52 193
Gerschgorin’s theorem, diagonal similarities      40—41
Gerschgorin’s theorem, Gerschgorin disks      39
Givens rotation      170 (see also “Plane rotation”)
Givens, W.      170 201
Goldstine, H.H.      203
Golub, G.H.      23 24 201 227 264 367
Graded matrix      108 113 200
Graded matrix and balancing      110
Graded matrix and the QR algorithm      108—110
Graded matrix, bidiagonal QR algorithm      227—228
Graded matrix, Jacobi’s method      203
Graded matrix, types of grading      108
Gram — Schmidt algorithm      198 303
Gram — Schmidt algorithm, B variants      372
Gram — Schmidt algorithm, gsreorthog      198 304
Gram — Schmidt algorithm, modified      307 359
Grcar, J.F.      365
Greek-Latin equivalents      421
Grimes, R.G.      367
Gsreorthog      see “Gram — Schmidt algorithm”
Gu, M.      201 228
Gutknecht, M.H.      367
Hadamard, M.J.      110
Handbook for Automatic Computation: Linear Algebra      112
Handbook for Automatic Computation: Linear Algebra, balancing for eigenvalue computations      112
Handbook for Automatic Computation: Linear Algebra, eigenvalues by bisection      202
Handbook for Automatic Computation: Linear Algebra, eigenvectors by the inverse power method      202
Handbook for Automatic Computation: Linear Algebra, Jacobi’s method      203
Handbook for Automatic Computation: Linear Algebra, S/PD eigenproblem      235
Handbook for Automatic Computation: Linear Algebra, singular value decomposition      227
Harmonic Rayleigh — Ritz method      293 296 411
Harmonic Rayleigh — Ritz method, computation      293—294
Harmonic Rayleigh — Ritz method, computation, from Krylov decomposition      314—315
Harmonic Rayleigh — Ritz method, computation, Hermitian matrix      294
Harmonic Rayleigh — Ritz method, computation, ordinary eigenproblem      294
Harmonic Rayleigh — Ritz method, computation, Rayleigh quotient      294
Harmonic Rayleigh — Ritz method, exact eigenspace      293
Harmonic Rayleigh — Ritz method, generalized eigenvalue problem      296
Harmonic Rayleigh — Ritz method, harmonic Ritz pair      292
Harmonic Rayleigh — Ritz method, Hermitian matrix      296
Harmonic Rayleigh — Ritz method, Rayleigh quotient preferred to harmonic Ritz value      294 336
Harmonic Rayleigh — Ritz method, screening of spurious eigenpairs      293
Hermitian matrix      see “Symmetric matrix”
Hermitian matrix, eigenvalue      13 52
Hermitian matrix, eigenvalue, condition      42—43
Hermitian matrix, eigenvalue, Fischer’s theorem      41
Hermitian matrix, eigenvalue, Hoffman — Wielandt theorem      43
Hermitian matrix, eigenvalue, interlacing theorem      42
Hermitian matrix, eigenvalue, min-max characterization      41
Hermitian matrix, eigenvalue, perturbation      42
Hermitian matrix, eigenvalue, principal submatrix      42
Hermitian matrix, eigenvector      13
Hermitian matrix, residual bounds for eigenspaces      262—263 265
Hermitian matrix, residual bounds for eigenvalues      254 263—264 265
Hermitian matrix, sep      51
Hermitian matrix, special properties      157
Hessenberg form      81
Hessenberg form of a symmetric matrix      158
Hessenberg form, Householder reduction      83—88 110—111
Hessenberg form, Householder reduction, accumulating transformations      86
Hessenberg form, Householder reduction, first column of the accumulated transformation      87
Hessenberg form, Householder reduction, operation count      86
Hessenberg form, Householder reduction, overwriting original matrix      87
Hessenberg form, Householder reduction, stability      87 111
Hessenberg form, implicit Q theorem      116 me
Hessenberg form, nonorthogonalreduction      111
Hessenberg form, uniqueness of reduction      116
Hessenberg form, unreduced      116 me
Hessenberg QR algorithm, ad hoc shift      100 105
Hessenberg QR algorithm, applying transformations to deflated problems      95—96
Hessenberg QR algorithm, basic QR step      92—94
Hessenberg QR algorithm, basic QR step, operation count      92
Hessenberg QR algorithm, basic QR step, stability      94
Hessenberg QR algorithm, complex conjugate shifts      115
Hessenberg QR algorithm, deflation      94—95 112
Hessenberg QR algorithm, deflation, aggressive deflation      105—106 112 123
Hessenberg QR algorithm, deflation, applying transformations to deflated problems      95—96
Hessenberg QR algorithm, deflation, double shift algorithm      123
Hessenberg QR algorithm, detecting negligible subdiagonals      94—95
Hessenberg QR algorithm, detecting negligible subdiagonals, 2x2 blocks      129
Hessenberg QR algorithm, detecting negligible subdiagonals, backward stability      94
Hessenberg QR algorithm, detecting negligible subdiagonals, deflation      123
Hessenberg QR algorithm, detecting negligible subdiagonals, double shift algorithm      123—126
Hessenberg QR algorithm, detecting negligible subdiagonals, normwise criterion      94—95
Hessenberg QR algorithm, detecting negligible subdiagonals, operation count      123
Hessenberg QR algorithm, detecting negligible subdiagonals, QR step      120—123
Hessenberg QR algorithm, detecting negligible subdiagonals, relative criterion      95
Hessenberg QR algorithm, detecting negligible subdiagonals, stability      126
Hessenberg QR algorithm, explicit shift algorithm      98—100
Hessenberg QR algorithm, explicit shift algorithm, convergence      98—100
Hessenberg QR algorithm, explicit shift algorithm, eigenvalues only      100
Hessenberg QR algorithm, explicit shift algorithm, operation count      100
Hessenberg QR algorithm, explicit shift algorithm, searching for negligible subdiagonal elements      96—97
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå