Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Matrix algorithms. Volume 2: Eigensystems

Àâòîð: Stewart G.W.

Àííîòàöèÿ:

This book is the second volume in a projected five-volume survey of numerical linear algebra and matrix algorithms. This volume treats the numerical solution of dense and large-scale eigenvalue problems with an emphasis on algorithms and the theoretical background required to understand them. Stressing depth over breadth, Professor Stewart treats the derivation and implementation of the more important algorithms in detail. The notes and references sections contain pointers to other methods along with historical comments.

The book is divided into two parts: dense eigenproblems and large eigenproblems. The first part gives a full treatment of the widely used QR algorithm, which is then applied to the solution of generalized eigenproblems and the computation of the singular value decomposition. The second part treats Krylov sequence methods such as the Lanczos and Arnoldi algorithms and presents a new treatment of the Jacobi-Davidson method.

The volumes in this survey are not intended to be encyclopedic. By treating carefully selected topics in depth, each volume gives the reader the theoretical and practical background to read the research literature and implement or modify new algorithms. The algorithms treated are illustrated by pseudocode that has been tested in MATLAB implementations.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 469

Äîáàâëåíà â êàòàëîã: 23.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Hessenberg QR algorithm, explicit shift algorithm, stability      98
Hessenberg QR algorithm, forward instability      325 346
Hessenberg QR algorithm, Francis double shift      115 148
Hessenberg QR algorithm, implementation issues      112
Hessenberg QR algorithm, implicit double shift      87 110 118—123 128
Hessenberg QR algorithm, implicit double shift, general strategy      118
Hessenberg QR algorithm, implicit double shift, real Francis shifts      119
Hessenberg QR algorithm, implicit double shift, starting      118—119
Hessenberg QR algorithm, implicit Q theorem      118 me
Hessenberg QR algorithm, invariance of Hessenberg form      92 112
Hessenberg QR algorithm, multishift      128—129
Hessenberg QR algorithm, transmission of shifts      112
Hessenberg QR algorithm, Wilkinson shift      97 112
Hessenberg QR algorithm, Wilkinson shift, computation      97—98
Hessenberg-triangular form      144—147 156
Hessenberg-triangular form, operation count      147
Hessenberg-triangular form, stability      147
Higham, D.J.      380
Higham, N.J.      24 228 380
Hilbert, D.      23
Hoffman — Wielandt Theorem      43 169
Horn, R.A.      23
Horowitz, L. R      203
Hotelling, H.      69
Householder transformation      12 81 111
Householder transformation, product with a matrix      81—82
Householder transformation, reduction of a vector to multiple of $e_{1}$      82—83
Householder transformation, reduction of a vector to multiple of $e_{n}$      82—83
Householder transformation, reduction of real vectors      83
Householder transformation, reduction of row vectors      82
Householder, A.S.      23 111 279
Hump, the      34
I (cross matrix)      423
I, $I_{n}$ (identity matrix)      423
Implicit Q theorem      116 118
Inertia      190 201
Inertia and LU decomposition      191
Inertia of a tridiagonal matrix      191—193
Inertia of a tridiagonal matrix, operation count      192
Inertia of a tridiagonal matrix, stability      192—193
Inertia, computed by Gaussian elimination      191
Inertia, invariance under congruence transformations      190
Inf(X) (smallest singular value of X)      205
Interlacing theorem      42
Interval bisection      193
Invariant subspace      see “Eigenspace”
Inverse power method      66 70—71 170
Inverse power method, backward error      69
Inverse power method, convergence      68
Inverse power method, dominant eigenvector      56
Inverse power method, effects of rounding error      68—69
Inverse power method, implementation      67
Inverse power method, residual computation      66—67
Inverse power method, symmetric band matrix      195—200
Inverse power method, use of optimal residuals      71
Ipsen, I.C.F.      70 265
Jacobi — Davidson method      296 381 396 404 405 419—420
Jacobi — Davidson method, compared with approximate Newton method      406
Jacobi — Davidson method, convergence testing      408—409
Jacobi — Davidson method, convergence to more than one vector      407
Jacobi — Davidson method, convergence to more than one vector, retarded by inexact solution      417—418
Jacobi — Davidson method, correction equation      420
Jacobi — Davidson method, Davidson’s algorithm      419
Jacobi — Davidson method, derivation from approximate Newton method      404—405
Jacobi — Davidson method, exact solution of correction equation      415—416
Jacobi — Davidson method, exact solution of correction equation, restriction on choice of shifts      415—416
Jacobi — Davidson method, extending partial Schur decompositions      407—411
Jacobi — Davidson method, focal region      405
Jacobi — Davidson method, harmonic Ritz vectors      411—412
Jacobi — Davidson method, Hermitian matrices      412—414 420
Jacobi — Davidson method, iterative solution of correction equation      416—418
Jacobi — Davidson method, iterative solution of correction equation, free choice of shifts      416—417
Jacobi — Davidson method, iterative solution of correction equation, Krylov sequence methods      416
Jacobi — Davidson method, iterative solution of correction equation, preconditioning      416
Jacobi — Davidson method, iterative solution of correction equation, stopping      417—418
Jacobi — Davidson method, Olsen’s method      419—420
Jacobi — Davidson method, operation count      409
Jacobi — Davidson method, orthogonalization      409
Jacobi — Davidson method, partial Schur decomposition      407
Jacobi — Davidson method, residual computation      408—409
Jacobi — Davidson method, restarting      411
Jacobi — Davidson method, restarting, with harmonic Ritz vectors      412
Jacobi — Davidson method, shift parameters      405—406
Jacobi — Davidson method, solving projected systems      414—415
Jacobi — Davidson method, solving projected systems, ill conditioning      415
Jacobi — Davidson method, solving projected systems, multiple right-hand sides      414—415
Jacobi — Davidson method, storage requirements      409
Jacobi — Davidson method, updating the Rayleigh quotient      409
Jacobi, C.G.J.      201 202 403 420
Jacobi’s method      202—203
Jacobi’s method and graded matrices      203
Jacobi’s method as preprocessing step      202
Jacobi’s method, convergence      202
Jacobi’s method, convergence, cyclic method      203
Jacobi’s method, convergence, quadratic      203
Jacobi’s method, parallelism      203
Jacobi’s method, rediscovery      202
Jacobi’s method, threshold method      203
Jennings, A.      394 395
Jensen, P.S.      347 380
Jia, Z.      295 296
Jiang, E.      170 265
Johnson, C.R.      23
Jordan block      see “Jordan canonical form”
Jordan canonical form      21 24—25 36
Jordan canonical form, assessment      22 25
Jordan canonical form, Jordan block      7 20
Jordan canonical form, Jordan block, powers of      34—35
Jordan canonical form, principal vector      22
Jordan canonical form, sensitivity of eigenvalues      38
Jordan canonical form, uniqueness      21
Jordan, C.      155 226 264
Kahan, W.      53 156 170 201 227 264 265
Kaniel, S.      280
Kato, T.      52
Kline, M      23
Koenig, J.      110
Kogbetliantz, E.G.      228
Kollerstrom, N.      418
Krause, G.      52
Kronecker product      24
Kronecker, L.      155
Krylov decomposition      297 309.316
Krylov decomposition, computation of harmonic Ritz vectors      314—315
Krylov decomposition, computation of refined Ritz vectors      314
Krylov decomposition, computation of residuals      335
Krylov decomposition, economics of transforming      312—314
Krylov decomposition, equivalence      309
Krylov decomposition, equivalence, to an Arnoldi decomposition      311—312
Krylov decomposition, nomenclature      310
Krylov decomposition, orthonormal      309
Krylov decomposition, Rayleigh quotient      309
Krylov decomposition, reduction to Arnoldi form      312—314
Krylov decomposition, similarity      310
Krylov decomposition, translation      311
Krylov subspace      267 279 “Krylov “Lanczos
Krylov subspace and defective matrices      276
Krylov subspace and scaling      268
Krylov subspace and similarity transformations      268
Krylov subspace, block      277. 280 367
Krylov subspace, block Krylov sequence      277
Krylov subspace, block, computation      277
Krylov subspace, block, convergence      277
Krylov subspace, block, non-Hermitian matrices      278
Krylov subspace, compared with power method      266
Krylov subspace, convergence      269 279—280 315
Krylov subspace, convergence, assessment of polynomial bounds      274
Krylov subspace, convergence, multiple eigenvalues      273—274
Krylov subspace, convergence, polynomial bounds      269—272
Krylov subspace, convergence, square root effect      272—273
Krylov subspace, convergence, to inferior eigenvector      273
Krylov subspace, convergence, to interior eigenpairs      273
Krylov subspace, convergence, to the subdominant eigenvector      266
Krylov subspace, degeneracy in Krylov sequence      298
Krylov subspace, elementary properties      267—268
Krylov subspace, invariance under shifting      268
Krylov subspace, Krylov matrix      267
Krylov subspace, Krylov sequence      266 279
Krylov subspace, multiple eigenvalues      277
Krylov subspace, multiple eigenvalues, convergence      273—274
Krylov subspace, multiple eigenvalues, deflation      278
Krylov subspace, non-Hermitian matrices, convergence      274—275 280
Krylov subspace, non-Hermitian matrices, polynomial bounds      275—276
Krylov subspace, polynomial representation      268
Krylov subspace, termination      268
Krylov subspace, termination, and characteristic polynomial      279
Krylov subspace, termination, and eigenspaces      269
Krylov subspace, uniqueness of starting vector      301
Krylov, A.N.      279
Kublanovskaya, V.N.      110
Lagrange, J.-L.      23
Lanczos algorithm      279 315
Lanczos algorithm and characteristic polynomial      315
Lanczos algorithm and Rayleigh — Ritz method      348
Lanczos algorithm as iterative method      365
Lanczos algorithm, adjusted Rayleigh quotient      351
Lanczos algorithm, adjusted Rayleigh quotient, updating      362—363
Lanczos algorithm, block      280 367
Lanczos algorithm, computing residual norms      363
Lanczos algorithm, estimating loss of orthogonality      356—358
Lanczos algorithm, filter polynomial      352
Lanczos algorithm, filter polynomial, Chebyshev polynomial      365
Lanczos algorithm, filter polynomial, Leja points      365
Lanczos algorithm, full reorthogonalization      349 365
Lanczos algorithm, full reorthogonalization, convergence and deflation      352
Lanczos algorithm, full reorthogonalization, error analysis      365
Lanczos algorithm, full reorthogonalization, essential tridiagonality of Rayleigh quotient      351
Lanczos algorithm, full reorthogonalization, implicit restarting      351—352 365
Lanczos algorithm, full reorthogonalization, Krylov-spectral restarting      352 365
Lanczos algorithm, full reorthogonalization, stability      351
Lanczos algorithm, global orthogonality      350
Lanczos algorithm, Lanczos decomposition      297 307
Lanczos algorithm, Lanczos decomposition, Rayleigh quotient      306
Lanczos algorithm, Lanczos decomposition, uniqueness      307
Lanczos algorithm, Lanczos recurrence      307—308 348
Lanczos algorithm, Lanczos recurrence, alternative      307 315
Lanczos algorithm, Lanczos recurrence, loss of orthogonality      308
Lanczos algorithm, Lanczos recurrence, operation count      308
Lanczos algorithm, Lanczos recurrence, storage considerations      308
Lanczos algorithm, local orthogonality      350
Lanczos algorithm, loss of orthogonality      348
Lanczos algorithm, loss of orthogonality, local and global      350
Lanczos algorithm, method of minimized iterations      279
Lanczos algorithm, no reorthogonalization      349 366
Lanczos algorithm, no reorthogonalization, software      366
Lanczos algorithm, partial reorthogonalization      350 365—366
Lanczos algorithm, partial reorthogonalization, software      366
Lanczos algorithm, periodic reorthogonalization      350 358—362 365—366
Lanczos algorithm, periodic reorthogonalization, example      364
Lanczos algorithm, periodic reorthogonalization, modified Gram — Schmidt algorithm      359
Lanczos algorithm, periodic reorthogonalization, software      366
Lanczos algorithm, Rayleigh quotient      347
Lanczos algorithm, Rayleigh quotient, contamination by reorthogonalization      350
Lanczos algorithm, reorthogonalization      348 365 full “Lanczos no “Lanczos partial “Lanczos periodic “Lanczos selective
Lanczos algorithm, reorthogonalization, and semiorthogonality      358—359
Lanczos algorithm, reorthogonalization, contamination of the Rayleigh quotient      350
Lanczos algorithm, reorthogonalization, difficulties      348—349
Lanczos algorithm, reorthogonalization, general algorithm      349—350
Lanczos algorithm, reorthogonalization, updating adjusted Rayleigh quotient      362—363
Lanczos algorithm, restarted      280
Lanczos algorithm, selective reorthogonalization      350 365—366
Lanczos algorithm, semiorthogonality      353 365—366
Lanczos algorithm, semiorthogonality, and reorthogonalization      358—359
Lanczos algorithm, semiorthogonality, effects of relaxing constraint      353
Lanczos algorithm, semiorthogonality, QR factorization      353—354
Lanczos algorithm, semiorthogonality, Rayleigh quotient      355
Lanczos algorithm, semiorthogonality, residual norms      355—356
Lanczos algorithm, semiorthogonality, Ritz vectors      355—356
Lanczos algorithm, semiorthogonality, size of reorthogonalization coefficients      354
Lanczos algorithm, singular value decomposition      366—367
Lanczos algorithm, termination and restarting      350
Lanczos algorithm, thick restarting      365
Lanczos decomposition      see “Lanczos algorithm”
Lanczos recurrence      see “Lanczos algorithm”
Lanczos, C.      279 315 365
LAPACK      112
LAPACK, $2\times2$ blocks in double shift QR algorithm      129
LAPACK, $2\times2$ blocks in QZ algorithm      156
LAPACK, ad hoc shift in QR algorithm      105
LAPACK, bidiagonal QR algorithm      228
LAPACK, CS decomposition      237
LAPACK, differential qd algorithm      228
LAPACK, divide-and-conquer algorithm for the spectral decomposition      183
LAPACK, eigenvalues by bisection      202
LAPACK, eigenvectors by the inverse power method      202
LAPACK, eigenvectors of triangular matrices      102
LAPACK, exchanging eigenblocks      328 346
LAPACK, multishift QR algorithm      128 129
LAPACK, PWK method for the tridiagonal QR algorithm      171
LAPACK, reduction to tridiagonal form      170
LAPACK, S/PD generalized eigenvalue problem      235
LAPACK, spectral decomposition downdating      201
LAPACK, storage of band matrices      187
LAPACK, tridiagonal QR step      170
LAPACK, Wilkinson’s algorithm      233
Large matrices      239
Large matrices, storage of eigenvectors      239
Large matrices, storage of sparse matrices      239
Latent value      24
Le, J.      346
Left eigenpair      2
Lehoucq, R.B.      345 346
Lewis, J.G.      367
Li, C.K.      235
Local convergence ratio      see “Convergence ratios”
LR algorithm      110 394
LR algorithm, convergence      111
LU decomposition      193 425
LU decomposition and inertia      191
Lui, Z.A.      367
Martin, R.S.      113
Mathias, R.      129 235 265
Matrix      421
Matrix powers $(A^{k})$      33—36
Matrix powers $(A^{k})$, behavior when computed      36
Matrix powers $(A^{k})$, spectral radius bounds      33
Matrix powers $(A^{k})$, the hump      34
Matrix, cross      423
Matrix, diagonal      423
Matrix, element      421
Matrix, full rank      425
Matrix, hermitian      423
Matrix, history      23
Matrix, identity      423
Matrix, order      422
Matrix, orthogonal      423
Matrix, orthonormal      423
Matrix, permutation      423
Matrix, sum and product      422
Matrix, symmetric      423
Matrix, trapezoidal      424
Matrix, triangular      424
Matrix, unit triangular, trapezoidal      424
Matrix, unitary      423
Matrix, zero      423
Matrix-vector product, effects of rounding error      65
Matrix-vector product, tridiagonal matrix      58—59
Meerbergen, K.      380
Method of minimized iterations      279
Moler, C.B.      156
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå