Авторизация
Поиск по указателям
Rosenfeld B. — Geometry of Lie Groups
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Geometry of Lie Groups
Автор: Rosenfeld B.
Аннотация: This book represents the fruits of the author's many years of research and teaching. The introductory chapter contains the necessary background information from algebra, topology, and geometry of real spaces. Chapter 1 presents more specialized information on associative and nonassociative algebras and on Lie groups and algebras. In Chapters 2 through 6 geometric interpretations of all simple Lie groups of classes An, Bn, Cn, and Dn as well as of finite groups of Lie type are given. In Chapters 5 and 6 geometric interpretations of quasisimple and r-quasisimple Lie groups of the same classes are included. In Chapter 7, for the first time ever, geometric interpretations of all simple and quasisimple Lie groups of exceptional classes G2, F4, E6, E7, and E8 are given. The role of exercises is played by the assertions and theorems given without a full proof, but with the indication that they can be proved analogously to already proved theorems. Audience: The book will be of interest to graduate students and researchers in mathematics and physics.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 393
Добавлена в каталог: 18.10.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Inertia 329
Inner product 8
Interior 5
Interior of an oval hyperquadric 220
Interior, domain of a hypersphere 10 388
Interpretation of Hermitian hyperbolic space in Euclidean space 234
Interpretation of manifolds of lines 3—planes 236
Interpretation of quadratic space by hyperspheres 238
Interpretation of quasisymplectic spaces 314—315
Interpretation of quaternionic symplectic space 318—320
Interpretation of real symplectic space 315—316
Intersection 7
Invariance axiom 197
Invariant subgroup 3
Invariants of equations of hyperquadrics 187—188
Invariants of two points in a quaternionic symplectic space 314
Inversion in hypercycle 299
Inversion in hyperquadric 143
Inversion in hypersphere 11
Inversive space 11
Irreducible linear representation of a group 93
Isoclinic m-planes 179
Isomorphism 2
Isomorphisms of simple Lie groups 69 82
Isotropic space 288
Iwasawa decomposition 256
Jacobi identity 23
Jacobsons theorems 89
Jordan, algebra, commutative 87
Jordan, general 91
Jordan, ternar 92
Kahlerian manifold 326
Kantor theorems 101—104
Kantor — Koecher theorem 104
Karpova theorem 308
Khayyam — Saccheri quadrangle 262—263
Killing-Cartan, form 25
Killing-Cartan, theorem 64
Kinematical twist 201
Klein bottle 279—280
Kleinian group 268
Klimanova — Petsko theorem 307
Kneser theorem 196—197
Kolmogorov axioms 120
Kotelnikov — Study — Fubini interpretations 235
Kronecker product 96
Lagrangean n-plane 313
Lanner group 268—270
Latitude 193
Lattice 6
Lie, algebra 23
Lie, group 21
Lie, ternar 92
Liebmann theorem 257
Light quadruple, tetrad 218
Limit point 5
Line (straight) 7
Linear, complex of lines 152
Linear, congruence of lines 112
Linear, dependence, independence of vectors 4
Linear, operator 13
Linear, representation of a group 93
Linear, space 3
Linear, transformation 4 12
Linnik theorem 40 56
Liouville theorem 204
Lipschitz theorem 97
Lipschitzian 98 151
Local absolute, superabsolute of a symmetric space 269—276 354—356
Locally isomorphic Lie groups 21
longitude 193
Loop 2
Lorentz transformation 216
m — Pair 132
m — Planar apex of a hypercone 148
m — Planar generators 143
m — Plane 7 114
m — Simplex 184
m — Sphere 11 211
Magma 2
Main moment in elliptic of a system of sliding vectors 199 203
Main moment in elliptic, hyperbolic space 281
Manifold of generators of maximal dimension of real hyperquadric 259—260
Manifold of m-planar generators of a hyperquadric 144—145 150—151 164-165
Mathieu groups, planes 214
Matrix 40
Matrix, coordinates, affine 133—134
Matrix, equidistant hyperquadric 252
Matrix, projective, tangential 129 771
Meridian 193
Metasymplectic geometries 351
Metric of spherical sliding vector 202
Metric, automorphism 33
Metric, face 184
Metric, hyperquadric, linear complex 304
Metric, m-horosphere 305
Metric, space 8
Metric, tensor 15 771
Miquel theorems 207—208
Mobius strip 170 279—280
Modular group 268
Module 106
Modulus 8 29—31 35 40 43 46 49 51 55 56
Molien, criterion 37
Molien, theorem 45
Moment of couple of vectors 199
Monoid 2
Motion 25 175 227 336
Multiple number 35
n — Chain 157
n — Cocube 184
n — Cube 184
Nabla operator 14
Natural topology 10
Neighborhood 5
Nonsingular matrix 41
Normal, 2-bichains 333 348
Normal, n-chains 182 269 337 342—343 347—348
Normal, vector 12
Null lines 153
Null points 154
Null-system 153 166
Octave, octonion 54
Octonionic symplectic 5-space 350
Octooctonion 60
Octooctonionic Hermitian plane 344—348
One-element extension 214
Operators of complex, split complex, dual structure 107
Orbit 25
Ordered set 6
Oriented volume 184
Origin 7
Orthogonal group 22
Orthogonality 9
Oval hyperquadric 147
Pappus, configuration 155
Pappus, theorem 109 119
Parabolic, common perpendiculars of ma-planes 301
Parabolic, figure 102
Parabolic, lines of kind a 299
Parabolic, space 102
Parabolic, subalgebra, subgroup 101
Paraboloid 140
Parallel, displacement 16
Parallel, m-planes 7
Parallelepiped, parallelogram 184
Parallels 194
Parameter of a m-equidistant hyperquadric 253
Paratactic, congruence of lines 230 304 7
Paratactic, m-planes 229 301
Partially ordered set 6
Pascal theorem 120
Pentaspherical coordinates 206
Petsko interpretation 240
Plane 7 114
Pluecker, coordinates 103
Pluecker, interpretation 121 239
Plural number 35
Poincare, interpretation 232
Poincare, polynomial 85
Poincare, transformation 216
Point at infinity 7 11 114
Point of reference of main moment 199
Point, apex of a hypercone 140 390
Polar, conjugate points 141 147
Polar, great circle 191
Polar, hyperplane 141
Polar, triangle 191
Polarized parabolic p-plane 304
Pole 141
Polygon 184
Polyhedron 184
Polynomial algebra 36
Polytope 184
Pontryagin theorems 40 55
Popovic interpretation 264
Position vector 7 114
Positivity axiom 8 197
Primitive group 25
Principal, axes of a hyperquadric 186
Principal, axis of a system of sliding vectors 200
Projective, configuration 155
Projective, coordinates 114
Projective, space 7
Projective, transformation 27
Prvanovic theorem 248
Pseudo — Clifford number 51
Pseudo — Euclidean space 10 168
Pseudo — Galilean space 288
Pseudo — Kahlerian manifold 326
Pseudo — Riemannian manifold 15
Pseudoaltemion 51
Pseudoconformal space 11 209
Pseudoelliptic space 219 223
Pseudohyperbolic space 219 223
Pseudoisotropic space 288
Pseudometric space 8
Pseudoorthogonal group 22
Quarter-octonion 60
Quartic curve with 28
Quartic curve with double tangents 72 151
Quasi — Cartan algorithm 289
Quasi — Euclidean space 288
Quasi — Lanner group 268—269 271—274
Quasi — Riemannian manifold 307
Quasialternion 53
Quasiconformal space 299
Quasielliptic space 285
Quasigroup 2
Quasihyperbolic space 285
Quasimatrix 53
Quasimetric space 290 296
Quasipseudo — Euclidean space 288
Quasipseudo — Riemannian manifold 307
Quasipseudoaltemion 53
Quasipseudoconformal space 299
Quasipseudoelliptic space 285
Quasipseudohyperbolic space 285
Quasisimple, algebra 37
Quasisimple, Lie group 289
Quasisymplectic, connection 326
Quasisymplectic, invariant of two lines 321
Quasisymplectic, space 321
Quasisymplectic, transformation 321
Quaternion 40
Quaternionic symplectic matrix 314
Quateroctonion 60
Quaterquaternion 48
Quotient, group 3
Quotient, space 6
r quasipseudo — Riemann ian manifold 307
r quasipseudoalternion 53
r quasisimple Lie algebra, group 289
r-quasi — Euclidean space 295
r-quasi — Riemannian manifold 307
r-quasialternion 53
r-quasiconformal space 299
r-quasielliptic space 291
r-quasihyperbolic space 294
r-quasimatrix 53
r-quasipseudo — Euclidean space 295
r-quasipseudoconformal space 299
r-quasipseudoelliptic space 291
r-quasipseudohyperbolic space 294
r-quasisimple algebra 38
r-quasisymplectic connection 326
r-quasisymplectic space 322—323
r-quasisymplectic trasformation 323
Radical 37
Radius of a hypersphere 10 188
Radius of curvature 2190 223 336
Radius-vector 7
Rank 62
Real elliptic, hyperbolic, pseudoelliptic, pseudohyperbolic spaces 219
Rectangular matrix 13
Rectilinear, apex of a hypercone 140
Rectilinear, generators 143
Reducible linear representation of a group 93
Reductive, Lie group 23
Reductive, space 26
Reflexivity axiom 6 8
Regular in Euclidean space 185
Regular in hyperbolic plane 265—267
Regular, conformal configuration 209
Regular, honeycomb in elliptic plane 265
Regular, polygon, polyhedron 184
Regular, projective configuration 156
Regular, Steiner triple system 214
Regular, topological space 5
Regular, vector 62 106
Reye configuration 156
Reye configuration, symbols 155
Riemann tensor 16
Riemann tensor in symmetric space 246—251
Riemannian manifuld 15
Riemannian manifuld of constant curvature 222
Riemannian manifuld, holomorphic curvature 248
Ring 2
Root, forms 63
Root, lattice 95
Root, vectors 63 76 80
Rotations 175
Rotor 14
Rumyantseva theorems 318
Satake diagram 81
scalar 3
Scalar, field 14
Scalar, product 8
SchefFers theorem 33
Schlafli theorem on regular polyhedra 184
Schrodinger equation 329
Screws in elliptic, hyperbolic space 281
Screws in Euclidean space 201
Screws in quasielliptic, quasihyperbolic etc, spaces 307
Sectional curvature 17 246 248—249 251 339
Segrean 112 151
Semicube 71
Semideterminant 43 45
Semigroup 2
Semioctonion 60
Реклама