Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Rosenfeld B. — Geometry of Lie Groups
Rosenfeld B. — Geometry of Lie Groups



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Geometry of Lie Groups

Автор: Rosenfeld B.

Аннотация:

This book represents the fruits of the author's many years of research and teaching. The introductory chapter contains the necessary background information from algebra, topology, and geometry of real spaces. Chapter 1 presents more specialized information on associative and nonassociative algebras and on Lie groups and algebras. In Chapters 2 through 6 geometric interpretations of all simple Lie groups of classes An, Bn, Cn, and Dn as well as of finite groups of Lie type are given. In Chapters 5 and 6 geometric interpretations of quasisimple and r-quasisimple Lie groups of the same classes are included. In Chapter 7, for the first time ever, geometric interpretations of all simple and quasisimple Lie groups of exceptional classes G2, F4, E6, E7, and E8 are given. The role of exercises is played by the assertions and theorems given without a full proof, but with the indication that they can be proved analogously to already proved theorems. Audience: The book will be of interest to graduate students and researchers in mathematics and physics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 393

Добавлена в каталог: 18.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Semiquatemion      46—47
Semiquatemionic symplectic space      322
Semisimple, algebra      37
Semisimple, Lie algebra, group      23
Semispinor      101
Semisplit simple real Lie group      81
Shirokov, interpretation      303
Shirokov, theorem      246
Shortest distance between two planes      177
Side of a polygon      184
Similitude      26 176
Simple, algebra      37
Simple, alternative algebra      57
Simple, finite group of Lie type      87
Simple, Lie algebra, group      23
Simple, ratio      124
Simple, root vector      67—68
simplex      71 184
Singular of rank r      113
Singular, matrix      41
Singular, vector      106
Skew, field      2
Skew, product      14
Skopets interpretations      264
Sliding vectors in elliptic, hyperbolic space      281
Sliding vectors in Euclidean space      198—199
Sliding vectors in quasielliptic, quasihyperbolic space      306
Sliding vectors in r-quasielliptic, r-quasihyperbolic space      307 392
Small Desargues theorem      334
Solvable Lie group      22
Space forms      2789—281
Special, linear group      22
Special, orthogonal, pseudoorthogonal group      22
Special, planes in G-elliptic $\sigma$-space      352
Special, Relativity      215—217
Spherical, coordinates      193
Spherical, cosine, dual cosine, sine laws      190—191
Spherical, simplex      195
Spherical, sliding vectors      202
Spherical, triangle      190
Spherical, Weyl group      69
Spinor      101
Spinor, group      97
Spinor, representation      97 240
Split, alternion      52
Split, complex number      30
Split, octonion      55
Split, quarter-octonion      60
Split, quaternion      43
Split, quateroctonion      60
Split, semioctonion      60
Split, semiquaternion      47
Split, simple real Lie algebra, group      81
Square matrix      13
Stabilizer      25
Stationary, angles between two m-planes      178
Stationary, distances between two TO-planes      229
Steiner triple system      214
Stepashko theorem      366
Structure constants      4 24
Subfield,subgroup, subring      2
subspace      5
Sum of $\varepsilon$-plane and m-plane      7
Superabsolute of symmetric space      271
Supergravity      368—369
Symmetric space      25
Symmetry figure      156
Symplecta      351
Symplectic, congruence of lines      323
Symplectic, connection      327
Symplectic, group      22 311
Symplectic, invariant of two lines      312
Symplectic, manifold      326
Symplectic, matrix      22 311
Symplectic, space      311
Symplectic, transformation      311 313
Tangent, hyperplane      143 147
Tangent, space, vector      15
Ternars      92—93
Tetracyclic coordinates      206
Tits theorem      103
Topological with countable base      5
Topological, group      21
Topological, manifold      14
Topological, product      6
Topological, space      5
Torsion tensor      18
Torsion-free affine connection      18
Torus      280
Torus, group      22
Transitive group      25
Transitivity axiom      6
Translation      26
Transposed matrix      41
Transversals of two m-pairs      133
Triality principle      70 260—261
triangle      184
Triangle, axiom      7—8
Triangle, inequality      8
Trivial space      5
Twisted finite group of Lie type      214
Twistor program      283
Valency of a tensor      12
Vector      3
Vector, field      14
Vector, representing a point      219
Veronesean      151—152
Vertex of a polygon, polyhedron      184
Vertex polygon, polyhedron      184
Vinberg theorem      79—80
Volume of elliptic space      231
Wan Zhe — Xian theorems      165—166
Weight      94
Weight form, vector      94
Weight lattice      95
Zamakhovsky theorems      104—105
Zhelezina interpretations      302—303
Zorn, theorem      57
Zorn, vector-matrix      56—57
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте