Авторизация
Поиск по указателям
Rosenfeld B. — Geometry of Lie Groups
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Geometry of Lie Groups
Автор: Rosenfeld B.
Аннотация: This book represents the fruits of the author's many years of research and teaching. The introductory chapter contains the necessary background information from algebra, topology, and geometry of real spaces. Chapter 1 presents more specialized information on associative and nonassociative algebras and on Lie groups and algebras. In Chapters 2 through 6 geometric interpretations of all simple Lie groups of classes An, Bn, Cn, and Dn as well as of finite groups of Lie type are given. In Chapters 5 and 6 geometric interpretations of quasisimple and r-quasisimple Lie groups of the same classes are included. In Chapter 7, for the first time ever, geometric interpretations of all simple and quasisimple Lie groups of exceptional classes G2, F4, E6, E7, and E8 are given. The role of exercises is played by the assertions and theorems given without a full proof, but with the indication that they can be proved analogously to already proved theorems. Audience: The book will be of interest to graduate students and researchers in mathematics and physics.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 393
Добавлена в каталог: 18.10.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
— Plane 160
-figure, -figure 102
(n + 2) - Spherical coordinates 206
(n — p) - Hedral angle 195
Absolute, bi — Hermitian conic 343
Absolute, complex 311 313
Absolute, differential 17
Absolute, Hermitian conic 335—336 340—341
Absolute, hyperquadric 220—221 223—224
Absolute, null-system 311 313
Absolutes, of quasielliptic, quasihyperbolic etc. spaces 285—286
Absolutes, of r-quasielliptic, r-quasihyperbolic, etc. spaces 292
Absolutes, of symmetric spaces 271
Absorption law 6
Addition of velocities in the Special Relativity 216
Additivity 197
Adjacent lines and points 108 118
Adjoint, group of a Lie group 80
Adjoint, matrix 41
Adjoint, representation 93
Affine, connection 18
Affine, coordinates 7 108
Affine, parameter 19
Affine, rotation 123
Affine, space 7 107
Affine, transformation 26 122 166
Affine, Weyl group 75
Albert theorem 45 56
Albert — Kalish theorem 89
Algebra 4
Algebra, structure 107
Algebraic, complex 152
Algebraic, congruence 152
Almost complex, split complex structure 332
Alternativity 54
Alternion 48
Analytic manifold 15
Analytic point 8 114
Angle between, hypercycles 298
Angle between, hyperspheres 189
Angular defect, excess 197
Annihilator 38
Anticyclic number 35
Antiholomorphic real 2—direction 183 241 339
Antimotion 176
Antisimilitude 176
Antisymmetry axiom 6
Arithmetic Fuchsian group 268
Arm of a couple of vectors 199
Associative law 6 9
Asymptotic direction 136—137
Autodual configuration 155
Automorphism 3 32—33 45—46
Autopolar simplex 147 229 251 296
Axial space 287 322
Basis vectors 4
Beltrami interpretation 232
Betti numbers 85
Bi — Hermitian conic 343
Bialtemion 52
Bicomplex number 34
BICUBE 71
Bioctonion 56
Bioctonionic Hermitian plane 340—341
Biparabolic space 105
Biquasisimple algebra 38
Biquatemion 48
Block 7
Borel subgroup 101
Brauer — Weyl theorem 52
Canonical form of a system of sliding vectors 201
Cartan, algorithm 81 240
Cartan, matrix 68
Cartan, subalgebra, subgroup 62
Cartan, theorem on simple associative algebras 45
Cartan, theorems on exceptional Lie groups 333 340
Cauchy inequality 9
Cauchy — Riemann conditions 33
Cayley number 54
Cayley — Dickson number 55
cell 115
Cellular decomposition, polynomial 115
Center of a hyperquadric 137 296
Center of a hypersphere 10 188 252
Center of a system of sliding vectors 200
CHARACTER 81
circle 11
Circular transformation 204 299
Classification of conics in hyperbolic plane 257—259
Classification of hyperquadrics 259
Clifford algebra, number 48
Clifford quadric 253
Clifford theorems 208—209
Closed subsets, closure 5
Co — Euclidean space 284
Cocube 71
Coefficient of connectedness 75
Collineation 27 125 167 334
Commutative law 6 8
Commutator 23
Comotion 304
Compact space 6
Complete quadrangle, quadrilateral 155
Complex, chain 157
Complex, Lie group 61 71
Complex, number 29
Conformal, configuration 207
Conformal, interpretations of a quadratic space 231
Conformal, space 11 204
Conformal, transformation 27 299
Congruence of m-planes 111 152
Conjugate, diameters 138
Conjugate, elements 29—31 34 40 43 47 49 51 55—56
Connected space 5
Connectedness group 95
Constant, curvature 222
Constant, holomorphic curvature 248
Continuous, mapping 6
Continuous, space 5
Contravariant vector 12
Convolution 12
Coordinates of vectors 4
Copseudo — Euclidean space 284
Correlation 126
Cosymmetry figure 159 304
Couple of vectors 199
Covariant, derivative 16
Covariant, vector (covector) 12
Coxeter, diagram 71—75
Coxeter, number 65
Coxeter, theorem on regular honeycombs in hyperbolic space 267
Coxeter, transformation 72
Cross ratio 127
Cross ratio, pairs 133
cube 71
Cubeable figure 194
Cubic surface with 27
Cubic surface with rectilinear generators 72 151
Curl 14
Curvature of space 219 223 336
Curvature tensor 16
Cyclic number 35
De Vries symbol 155
Derivative of vector function 14
Desargues, configuration 155
Desargues, theorem 110 119
Determinant 41 386
Diameter of hyperquadric 137
Diametral, hyperplane 138 1
Diametral, m-plane 137
Differentiable manifold, vector function 14
Dihedral angle 195
Direct sum, product 3
Discrete space 5
Distance 8 220
Distributive, lattice 6
Distributive, law 8
Divergence 14
Diverging lines 108
Division algebra 4
dodecahedron 71
Dodecahedron, spaces 280—281
Dominant weight 94
Dual, configurations 155
Dual, Lie group 61
Dual, number 31
Duality and stability 328—330
Duality principle 70 135 260
Duocomplex number 34
Duodual number 34
Duooctonion 60
Duoquaternion 48
Dycomplex number 34
Dydual number 34
Dynamical screw 201
Dynkin diagram, theorem 67
Dyoctonion 60
Dyparabolic space 55
Dyquaternion 48
Edge of a polyhedron 184
Eighth-octonion 61
Einstein rule 4
Elastic algebra 91
Elasticity 329
electromagnetic field 217
Ellipsoid 139
Elliptic and hyperbolic, lines of kind a 299
Elliptic and hyperbolic, regular polyhedra 266
Elliptic and hyperbolic, spaces 219 222
Endomorphism 3
Equidistant, barrel 253
Equidistant, hyperquadric 252 254
Equivalent systems of sliding vectors 199 202
Euclidean space 8 168—169
Even-dimensional quadratic symplectic space 313
Event 216
Exponents of a simple Lie group 73
Extended, Dynkin diagram 74
Extended, hyperbolic space 222 225
Extended, pseudoelliptic, pseudohyperbolic space 222 225
Exterior, differential form 20
Exterior, power of a linear representation 96
Exterior, product of vectors 13
Fermi coordinates 235
Field 2
Finite, affine space 161
Finite, conformal space 213
Finite, geometries with exceptional fundamental groups 368
Finite, Hermitian space 282
Finite, projective space 161
Finite, pseudoconformal space 213
Finite, quadratic space 282
Finite, symplectic space 326—327
Flag 103 295
Flag, manifold 103
Flag, plane 32 288
Flag, space 295
Focal variety 111
Free, module 106
Free, vector 198
Freudenthal, algebra 91
Freudenthal, magic square 350
Freudenthal, theorems on metasymplectic geometries 352 366
Frobenius algebra 38
Fuchsian groups 267—268
Fundamental, figures in a space with exceptional fundamental group 356—366
Fundamental, figures in a space with simple fundamental group 102
Fundamental, group 25
Fundamental, linear representations 94 367
Fundamental, root vectors 67
G-elliptic -space 331
G-pseudoelliptic, G-pseudohyperbolic —spaces 332
G-quasielliptic, G-quasihyperbolic etc —spaces 333
Galilean space 288
Galois, field 2
Galois, group 69
Gauss — Bonnet theorem 17
General linear group 22
Generalized coordinates, momenta 327
Geodesic 15
Geodesic, curvature 17
Geographical coordinates 193
Gorbunova theorem 305
Gradient 14
Grassmann, algebra 53
Grassmann, coordinates 103
Grassmann, manifold 121
Grassmannian 151
Group, algebra 37
Halfhyperplane, halfline, halfplane, halfpoint 160
Halfspace 160 184
Hamiltonian canonical equations 327
harmonic oscillator 328—329
Hausdorff space 5
Heisenberg group 255—256 313
Hermitian in a finite space 165
Hermitian, conic 354
Hermitian, ellipsoid, hyperboloid, paraboloid 139
Hermitian, elliptic interpretation of projective, symplectic geometry 237 316
Hermitian, Euclidean space 169
Hermitian, form 169
Hermitian, hyperquadric 136
Hermitian, hypersphere 188
Hermitian, linear congruence of lines 114
Hermitian, null-system 153
Hermitian, symplectic space 313
Hesse, configuration 155
Hesse, interpretation 239
Hjelmslev, algebra 38
Hjelmslev, space 109
Holomorphic plane 183
Holomorphy, angle 182 339
Holomorphy, vector 183 339
Homeomorphism 6
Homogeneous space 25
Homomorphism 2
Homothety 27
Hurwitz theorem 40 55
Hyperbolic, Coxeter diagram 268
Hyperbolic, regular polyhedron 266
Hyperbolic, space 219 222
Hypercone 140
Hypercubic 151
Hypercycle 297
Hypercylinder 140
Hyperplane 7 108
Hyperplane at infinity 7
Hyperquadric 136
Hyperquadric in a finite space 163—165
Hyperquartic 151
Hypersphere 10 188
Ibnal — Haytham — Lambert quadrangle 262
icosahedron 71
Ideal 3
Ideal point 11 114
Idempotent 30
Imprimitive group 25
Incidence structure 7
Incident fundamental, parabolic figures 100
Index of a pseudo — Euclidean space 10
Реклама