Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Straumann N. — General relativity and relativistic astrophysics
Straumann N. — General relativity and relativistic astrophysics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: General relativity and relativistic astrophysics

Àâòîð: Straumann N.

Àííîòàöèÿ:

This book divides into three parts. Part I develops the mathematical tools used in the general theory of relativity. Since I wanted to keep this part short, but reasonably self-contained, I have adopted the dry style of most modern mathematical texts. Readers who have never before been confronted with differential geometry will find the exposition too abstract and will miss motivations of the basic concepts and constructions. In this case, one of the suggested books in the reference list should help to absorb the material. I have used notations as standard as possible. A collection of important formulae is given at the end of Part I. Many readers should start there and go backwards, if necessary.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ãðàâèòàöèîííîå âçàèìîäåéñòâèå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1984

Êîëè÷åñòâî ñòðàíèö: 459

Äîáàâëåíà â êàòàëîã: 02.10.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Differential forms, interior product of      28—29 71
Differential forms, local basis of      21
Differential forms, tensor valued      65 73
Differential of a function      17
Differential of a map      10
Differential of component functions      18
Differential one-form      19
Differential topology      6
Dimension of differential manifold      12
Dimension of p-forms      28
Dimension of topological manifold      12
Disk accretion basic equations for thin disks      401—406
Disk accretion basic equations for thin disks, angular momentum conservation      403
Disk accretion basic equations for thin disks, energy conservation      404
Disk accretion basic equations for thin disks, equation of state      401
Disk accretion basic equations for thin disks, equations for vertical structure      405
Disk accretion basic equations for thin disks, mass conservation      402
Disk accretion basic equations for thin disks, radial momentum conservation      404
Disk accretion early theoretical work      401
Disk accretion, Keplerian disks      406
Disk accretion, Keplerian disks, effective temperature distribution      409
Disk accretion, Keplerian disks, efficiency      408
Disk accretion, Keplerian disks, emission spectrum      409—410
Disk accretion, Keplerian disks, luminosity      408
Disk accretion, Keplerian disks, opacity      408
Disk accretion, Keplerian disks, radial structure equations      406
Disk accretion, Keplerian disks, vertical structure equations      407
Disk accretion, relativistic Keplerian disks      425
Disk accretion, relativistic Keplerian disks, basic equations      425—427
Disk accretion, relativistic Keplerian disks, dissipation function      427—429
Disk accretion, relativistic Keplerian disks, energy production      430—431
Disk accretion, relativistic Keplerian disks, torque equation      429
Disk accretion, stability of accretion disks      419
Disk accretion, stability of accretion disks, basic equations      420—423
Disk accretion, stability of accretion disks, dispersion law      423—424
Disk accretion, stability of accretion disks, modes of instability      424—425
Disk accretion, stability of accretion disks, stability criterion      424
Disk accretion, standard disks      410
Disk accretion, standard disks a-law      411
Disk accretion, standard disks, analytic solutions      414—415
Disk accretion, standard disks, numerical solutions      416—418
Disk accretion, standard disks, radial structure      413
Disk accretion, standard disks, vertical structure for polytropic equation of state      411
Disk accretion, standard disks, viscosity      see also “Accretion” 410—411
Dissipation function      405 427 435
Divergence of vector field      45
Divergence theorem      46
Domain of dependence      160
Doppler shift      108—109
Dual basis      17
Dual basis, in cotangent space      17
Dual basis, of one-forms      61 72
Dual basis, of vector fields      20 72
Dual space      17
Dual transformation      23
Dyson — Lenard — Lieb — Thirring theorem      323
Eddington luminosity      382 388 414
Eddington — Finkelstein coordinates      198—199
Eddington — Robertson parameters      182
effective mass      308 310—311
Einstein      77 87 80
Einstein Observatory      306 374
Einstein tensor      61 130 132
Einstein tensor, linearized      214
Einstein tensor, of a spherically symmetric field      168—169 211
Einstein — Fokker theory      135
Einstein — Infeld — Hoffmann equations      255
Einstein — Infeld — Hoffmann equations, Lagrangian for      255
Einstein — Rosen bridge      198
Einstein's field equations      127ff
Einstein's field equations, characteristics of      163ff
Einstein's field equations, dependence of      139
Einstein's field equations, heuristic derivation      129
Einstein's field equations, in tetrad formalism      140—141
Einstein's field equations, Landau — Lifshitz decomposition of      158ff
Einstein's field equations, linearized      215 217—218
Einstein's field equations, uniqueness      129ff
Einstein's quadrupole formula      235
Electrodynamics      93—94
Electrodynamics, analogy with      143—144
Electrodynamics, formulation with exterior calculus      94f
Electrodynamics, identity as a consequence of gauge invariance      139—140 144
Electrodynamics, in tetrad formalism      152—153
Electrodynamics, shell-blocking effects      345
Electron capture      280 336 345
Electron fraction      280
Electron fraction, of collapsing core      345
Electron fraction, of iron-nickel core      280
Embedding      7
Emission of gravitational radiation      233ff
Emission of gravitational radiation, of a binary system      237ff
Energy and momentum conservation      91—92 142 144
Energy and momentum of gravitational waves      234—235 237
Energy and momentum of gravity for isolated systems      154—155
Energy and momentum tensor, for system of point-particles      252
Energy and momentum tensor, in geometric optic limit      104
Energy and momentum tensor, in Lagrangian field theory      141 142
Energy and momentum tensor, in post-Newtonian approximation      253
Energy and momentum tensor, of electromagnetic field      142—143 153
Energy and momentum tensor, of ideal fluid      91
Energy and momentum tensor, symmetry of      151
Energy and momentum three forms      149 155
Energy and momentum total      154
Energy and momentum total, for Schwarzschild solution      170—171
Energy and momentum total, of isolated systems      154ff
Energy transport equation      307 407
Entropy during supernova formation      344
Entropy flux four-vector      436—438
Entropy of iron-nickel core      280 344
Entropy per baryon      307 343 436
Entropy production      438—439
Eotvos experiment      78
Equation of state, for hot plasma      393 401
Equation of state, for ideal n-p-e mixture      294
Equation of state, general properties      299 309
Equation of state, polytropic      338
Equation of state, realistic equations of state      298 304 308 319
Equivalence principle      see “Principle of equivalence”
Ergosphere      366
Euler equations      434
Euler equations, relativistic      92
Euler — Lagrange equation      see “Variational principle”
Event horizon      see also “Black holes” 197 200 367—368
Evolution of massive stars      280
Evolution of massive stars, acceleration in late phases      334 337
Evolution of massive stars, evolutionary tracks      333
Evolution of massive stars, instability of core      280 337 341
Evolution of massive stars, leading to degenerate cores      280 337
Evolution of massive stars, mass of degenerate core      337
Evolution of massive stars, neutrino emission and      280 334
Evolution of massive stars, nuclear statistical equilibrium      333 338
Evolution of massive stars, onion structure      333
Evolution of massive stars, presupernova      332
Evolution of massive stars, thermonuclear reactions      333
Expansion tensor      439
Exponential mapping      50
Exponential mapping, and normal coordinates      50
Exterior algebra      28
Exterior algebra, of differential forms      29
Exterior derivative      32 35 71
Exterior derivative, expression for      35 71
Exterior derivative, morphisms and      333
Exterior differential forms      29
Exterior differential forms, components of      30
Exterior differential forms, induced mapping of      30
Exterior forms      27
Exterior product      27
Fermat metric      110
Fermat's principle      99
Fermi, derivative      113—114 127
Fermi, transport      113ff
Field strength electromagnetic      93
Field strength electromagnetic, in a static Lorentz manifold      110
Field strength gravitational-inertial      90
Fitting procedure of Eckart      439
Flat manifold      68
Flat manifold, locally      68
Flow of vector field      21f
Flow of vector field, global      22
Flow of vector field, local      22
Fourier law nonrelativistic      436
Fourier law relativistic      439
Gap energy in superfluids      311—312
Gap energy in superfluids, density dependence      312
Gauge conditions      161 244 247 251
Gauge group of linearized theory      215 217
Gauge harmonic      162 228
Gauge Hilbert      218 220 227
Gauge traceless transverse (TT)      223
Gauge transformation in linearized theory      215—216 218 220—221
Gauge transformations      88 139
Gaunt factor      397
Gauss' formulas for submanifolds      162
Gauss' theorem      45—46
Gaussian coordinates      see “Normal coordinates”
Geodesic curve      50
Geodesic curve, equation for      50
Geodesic curve, in local coordinate system      50 119
Geodesic deviation      125
Geodesic deviation, equation of      125
Geodesic deviation, in a gravitational wave      224
Geometric optics      100
Germ of paths      14
Germ of smooth functions      10
Germ of smooth mappings      9
Ginzburg — Landau parameter      311
Grassman algebra      see also “Exterior algebra” 28
Gravitational Bohr radius      81
Gravitational collapse qualitative picture      371—372
Gravitational collapse spherically symmetric      see also “Black holes; Core collapse; Supernova formation; Supernovae” 200ff
Gravitational constant      81
Gravitational constant, change of      186
Gravitational energy      see “Energy and momentum”
Gravitational energy nonlocalizability of      146
Gravitational field      90
Gravitational field equation      127ff
Gravitational field external      89ff
Gravitational field geometric optics in a      100ff
Gravitational field spherically symmetric      208—209
Gravitational field static      97—98 104ff 115ff 172
Gravitational field weak      96—97 132 214ff
Gravitational field, at large distances from the source      226ff
Gravitational field, stationary      104ff 115ff
Gravitational fine structure constant      81
Gravitational interaction strength of      81
Gravitational interaction universality of      82
Gravitational radiation      233—234
Gravitational radiation, Einstein's quadrupole formula      235
Gravitational radiation, from binary pulsar system      240 270
Gravitational radiation, from binary star system      237
Gravitational radiation, in core collapse      281
Gravitational radiation, of nonstationary black hole      361 372
Gravitational radiation, of rotating neutron star      354
Gravitational red shift      see also “Red shift” 83ff
Gravitational waves in the linearized energy flux of      234—235 237
Gravitational waves in the linearized geodetic deviation in      see also “Einstein's field equations; Energy and momentum” 224
Gravitational waves in the linearized theory      220ff
Hadronic neutral current      342
Hamilton's principle      see “Variational principle”
Hawking's area theorem      369f
Heat conduction      307
Heat flux four-vector      438
Helicity      222
Helium flash      381
Hercules X-l      348 374 377—378
Hercules X-l, cyclotron line      349
Hercules X-l, magnetic field      349
Hercules X-l, optical companion      377
Hercules X-l, pulsation and orbital periods      374
Hercules X-l, x-ray spectrum      349
Horizon for Kerr — Newman metric      367—368
Horizon for Schwarzschild metric      see also “Black holes” 171 197 200—201
Hydrodynamics of viscous fluids for perfect fluid      92
Hydrodynamics of viscous fluids nonrelativistic theory      432
Hydrodynamics of viscous fluids nonrelativistic theory, continuity equation      433
Hydrodynamics of viscous fluids nonrelativistic theory, decomposition of velocity gradient      432
Hydrodynamics of viscous fluids nonrelativistic theory, different forms of energy equation      434—435
Hydrodynamics of viscous fluids nonrelativistic theory, equations of motion      434
Hydrodynamics of viscous fluids nonrelativistic theory, substantial derivative      432
Hydrodynamics of viscous fluids nonrelativistic theory, transport theorem      433
Hydrodynamics of viscous fluids relativistic theory      436
Hydrodynamics of viscous fluids relativistic theory, energy balance equation      439
Hydrodynamics of viscous fluids relativistic theory, energy-momentum tensor      440
Hydrodynamics of viscous fluids relativistic theory, entropy production      438—439
Hydrodynamics of viscous fluids relativistic theory, equilibrium      436
Hydrodynamics of viscous fluids relativistic theory, relativistic Fourier law      439
Hydrodynamics of viscous fluids relativistic theory, relativistic Navier — Stokes equation      440
Hydrodynamics of viscous fluids relativistic theory, small departures from equilibrium      437
Ideal fluid      91
Ideal fluid, conservation of energy-momentum tensor of      144
Ideal fluid, spherically symmetric solution for      212—213
Ideal fluid, static field of      see also “Euler equations; Hydrodynamics of viscous fluids” 129
Immersion      6f
Induced algebra homomorphism      10
Induced derivation      31
Induced mappings      23 30
Induced orientation of boundary      44
Induced Riemannian metric      46
Induced scalar product      38
Inertial system global      86
Inertial system local      83 89 147
Infinitesimal transformation      24
Integral curve of vector field      21
Integration of differential forms      42—43
Invariant tensor field      24
Isolated systems      see also “Angular momentum; Energy and momentum” 154ff
Isometry      68
Isometry infinitesimal      see “Killing field”
Jacobi equation      125
Jacobi field      125
Jacobian of mapping      12
Kerr — Newman metric      362
Kerr — Newman metric, asymptotic field      363
Kerr — Newman metric, Boyer — Lindquist coordinates      362 364
Kerr — Newman metric, coordinate singularity      367
Kerr — Newman metric, horizon      366 368
Kerr — Newman metric, Kerr-coordinates      367
Kerr — Newman metric, special cases      362
Kerr — Newman metric, structure of light cones      see also “Killing fields” 367
Killing equation      105 146
Killing fields      104ff 115ff
Killing fields for Kerr — Newman metric      364
Killing fields for Schwarzschild metric      174 192—193
Komar formula      232
Kruskal continuation of Schwarzschild solution      190ff
Kruskal coordinates      193 195 197 200
Kruskal diagram      196 200
Kruskal transformation      see also Schwarzschild; Black holes” 195
Lagrange point      376
Lagrangian for      256
Lagrangian formalism      135ff
Lagrangian formalism, density, of matter fields      140
Lagrangian formalism, density, of matter fields, invariance properties of      150—151
Lagrangian formalism, density, of matter fields, of the electromagnetic field      140
Lagrangian formalism, density, of matter fields, relative to an orthonormal basis      153
Lagrangian formalism, density, of matter fields, total      149
Lagrangian formalism, for a test particle in a Schwarzschild field      137ff
Lagrangian formalism, for the linearized theory      217
Landau parameters      310 315
Landau — Lifschitz three forms      see “Pseudotensors”
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå