Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Quantum theory of many-particle systems

Àâòîðû: Fetter A.L., Walecka J.D.

Àííîòàöèÿ:

"Singlemindedly devoted to its job of educating potential many-particle theorists ... deserves to become the standard text in the field." — "Physics Today. "The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy." — "Endeavor. A self-contained treatment of nonrelativistic many-particle systems, this text discusses both formalism and applications. Chapters on second quantization and statistical mechanics introduce ground-state (zero-temperature) formalism, which is explored by way of Green's functions and field theory (fermions), Fermi systems, linear response and collective modes, and Bose systems. Finite-temperature formalism is examined through field theory at finite temperature, physical systems at finite temperature, and real-time Green's functions and linear response. Additional topics cover canonical transformations and applications to physical systems in terms of nuclear matter, phonons and electrons, superconductivity, and superfluid helium as well as applicati


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 601

Äîáàâëåíà â êàòàëîã: 14.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Sum rules      191—192 196p 296 577p
Sums over states replaced by integrals      26 38 394
Superconductor, alloys      415n 425 427
Superconductor, and Bose — Einstein condensation      441 446 476p
Superconductor, and electron-phonon interaction      444 448 476p
Superconductor, and electron-phonon interaction, Dyson’s equation      476p
Superconductor, and electron-phonon interaction, phonon propagator      477—478p
Superconductor, Bogoliubov equations      477p
Superconductor, chemical potential      334—335 453n
Superconductor, coherence length      422 426 433 472
Superconductor, condensation energy of      419 453
Superconductor, Cooper pairs      320—326 417 441
Superconductor, critical current      46n0 476p
Superconductor, critical field      415 451 453 474p
Superconductor, critical field, lower and upper      438 439 475p
Superconductor, effective interaction      448 476p
Superconductor, effective mass and charge      431
Superconductor, energy gap      330 417 447—449
Superconductor, entropy      419 476p
Superconductor, excitation spectrum      334
Superconductor, experimental facts      414—417
Superconductor, films      474p 476p
Superconductor, flux quantization      415—416 425
Superconductor, gap equation      333 446—449
Superconductor, gap function      443 466—474 489
Superconductor, gapless      417n 46n0
Superconductor, gauge invariance      444 454
Superconductor, Ginzburg — Landau theory      see Ginzburg — Landau theory
Superconductor, Gorkov equations      444 466
Superconductor, ground-state correlation function      337p
Superconductor, ground-state energy      335
Superconductor, heat capacity      320 416 420 451—454
Superconductor, Helmholtz free energy      431 451 453 474p
Superconductor, isotope effect      320 417 448 476p
Superconductor, local      427
Superconductor, London      427
Superconductor, matrix formulation      443—444
Superconductor, Meissner effect      414 421 423 457 459—460
Superconductor, mixed state      415n 439
Superconductor, model hamiltonian      441
Superconductor, nonlocal      427
Superconductor, numerical values, tables      422 448
Superconductor, order parameter      431
Superconductor, penetration length      427 434 472 475p
Superconductor, penetration length, general definition      429
Superconductor, penetration length, local limit      427 429 460
Superconductor, penetration length, nonlocal limit      429—430 460 461—463
Superconductor, penetration length, table      422
Superconductor, persistent currents      415—416
Superconductor, phase transition      431
Superconductor, Pippard      427 461—463
Superconductor, relation to Hartree — Fock theory      439—441
Superconductor, self-consistency condition      444 446
Superconductor, spin susceptibility      477p
Superconductor, stability of Meissner state      430
Superconductor, strong-coupling      44n0
Superconductor, surface energy      430 436—438
Superconductor, temperature Green’s function      442—444
Superconductor, thermodynamic potential      449—454
Superconductor, type I and type II      438—439 475p
Superconductor, ultrasonic attenuation      449 478p
Superconductor, uniform medium      444—454
Superconductor, variational calculation of ground state      336 337p
Supercurrent      432 472—474 476p
Superelectron density      423 431 459—460
Superfluid density      481—482 487 495
Supermultiplets      548 549n 558
Surface energy, in Bose system      497—498 502p
Surface energy, in superconductors      430 436—438
Surface energy, of nuclei      350
susceptibility      174 254p 309p 310p
Symmetry energy of nuclei      350 386p
Tadpole diagram      108 154
Tamm — Dancoff approximation      565—566
Temperature      34
Temperature correlation function      300
Temperature Green’s function      228 262
Temperature Green’s function, analytic continuation to real-time Green’s function      297—298
Temperature Green’s function, and proper self-energy      251
Temperature Green’s function, conservation of discrete frequency      246
Temperature Green’s function, Feynman rules, in coordinate space      242—243
Temperature Green’s function, Feynman rules, in momentum space      244—248
Temperature Green’s function, for bosons      491
Temperature Green’s function, for noninteracting system      232—234 245—246 298
Temperature Green’s function, for normal state      468
Temperature Green’s function, for superconductors      442—444
Temperature Green’s function, Fourier series for      244—245
Temperature Green’s function, Hartree — Fock approximation      257
Temperature Green’s function, in interaction picture      235—236
Temperature Green’s function, Lehmann representation      297
Temperature Green’s function, periodicity of      236—237 244—245
Temperature Green’s function, relation to observables      247 252 261—262
Temperature Green’s function, weight function      296—297 309p
Tensor force in nuclear matter      367 375 386p
Tensor operator      343
Thermal wavelength      277 304 306
Thermionic emission      49p
Thermodynamic limit      22 75 78 199 489
Thermodynamic potential      34—35 268—269 274 290p 327
Thermodynamic potential, coupling-constant integration for      231—232
Thermodynamic potential, for bosons      37 38 202 207
Thermodynamic potential, for electron gas      268 273—275 278 284 290p
Thermodynamic potential, for fermions      38 329—332
Thermodynamic potential, for phonons      393
Thermodynamic potential, in finite nuclei      528—537
Thermodynamic potential, of superconductor      449—454
Thermodynamic potential, relation, to Brueckner — Goldstone theory      288—289
Thermodynamic potential, relation, to temperature Green’s function      232 247 252
Thermodynamic potential, ring contribution      274—275 281—286
Thermodynamics, of magnetic systems      418
Thermodynamics, review of      34
Thomas — Fermi theory      177—178 195p 386p 575
Thomas — Fermi wavenumber      167 176 178 182 397
Time-development operator      56—58
Time-ordered density correlation function      174 175
Time-ordered product of operators      58 65 86—87
Transition matrix elements      540 543
Transition temperature of interacting Bose gas      259—261 493
Translational invariance      73—74
Transverse part of vector field      454
Two-fluid model      481
Two-particle correlations      191—192
Two-particle Green’s function      116p 253p
Ultrasonic attenuation      411p 449 478p
Uniform rotation      483—484 500p
Uniform system      69 190 214 292 321
Vacuum state      13 201
Variational Principle      29 336 337p 353 502p
Vector potential      424 425—428 431—433 435—437 454—456 459 465 468
Velocity potential      482 495
Vertex parts      402—406 411p
Vortices in He II      482—484 500p 502p
Vortices in He II, energy/unit length      484 499
Vortices in He II, vortex core      484 498—499
Wave functions, Dirac      188
Wave functions, for condensate      see Condensate wave
Wave functions, for Ginzburg — Landau theory      471
Wave functions, many-body      5—8 16
Wave functions, scattering      129 138—139 380
Wave functions, single particle      5
Wave functions, single particle, Hartree — Fock      352—353 503 508—511 541 558—559 567
Wave functions, single particle, spin and isospin      21 353
Weak interactions      566
White-dwarf stars      49 50p
Wick’s theorem      83—92 327 399 441 506 529 560
Wick’s theorem, at finite temperature      234—241 441
Wick’s theorem, for bosons      203 223p
Wigner force      354
Wigner lattice      31 398n
Wigner — Eckart theorem      505 521 544 586—587
Wigner’s supermultiplet theory      549n
Zero sound      183—187 195p 196p
Zero sound, compared to plasma oscillations      186
Zero sound, damping      187 195p 310p
Zero sound, dispersion relation      183—184
Zero sound, in liquid $He^{3}$      187
Zero sound, spin-wave analog      196p
Zero sound, velocity of      185—187
Zero-point energy      41 393
“Healing distance”      366 376
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå