Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Quantum theory of many-particle systems
Àâòîðû: Fetter A.L., Walecka J.D.
Àííîòàöèÿ: "Singlemindedly devoted to its job of educating potential many-particle theorists ... deserves to become the standard text in the field." — "Physics Today. "The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy." — "Endeavor. A self-contained treatment of nonrelativistic many-particle systems, this text discusses both formalism and applications. Chapters on second quantization and statistical mechanics introduce ground-state (zero-temperature) formalism, which is explored by way of Green's functions and field theory (fermions), Fermi systems, linear response and collective modes, and Bose systems. Finite-temperature formalism is examined through field theory at finite temperature, physical systems at finite temperature, and real-time Green's functions and linear response. Additional topics cover canonical transformations and applications to physical systems in terms of nuclear matter, phonons and electrons, superconductivity, and superfluid helium as well as applicati
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2003
Êîëè÷åñòâî ñòðàíèö: 601
Äîáàâëåíà â êàòàëîã: 14.09.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Sum rules 191—192 196p 296 577p
Sums over states replaced by integrals 26 38 394
Superconductor, alloys 415n 425 427
Superconductor, and Bose — Einstein condensation 441 446 476p
Superconductor, and electron-phonon interaction 444 448 476p
Superconductor, and electron-phonon interaction, Dyson’s equation 476p
Superconductor, and electron-phonon interaction, phonon propagator 477—478p
Superconductor, Bogoliubov equations 477p
Superconductor, chemical potential 334—335 453n
Superconductor, coherence length 422 426 433 472
Superconductor, condensation energy of 419 453
Superconductor, Cooper pairs 320—326 417 441
Superconductor, critical current 46n0 476p
Superconductor, critical field 415 451 453 474p
Superconductor, critical field, lower and upper 438 439 475p
Superconductor, effective interaction 448 476p
Superconductor, effective mass and charge 431
Superconductor, energy gap 330 417 447—449
Superconductor, entropy 419 476p
Superconductor, excitation spectrum 334
Superconductor, experimental facts 414—417
Superconductor, films 474p 476p
Superconductor, flux quantization 415—416 425
Superconductor, gap equation 333 446—449
Superconductor, gap function 443 466—474 489
Superconductor, gapless 417n 46n0
Superconductor, gauge invariance 444 454
Superconductor, Ginzburg — Landau theory see Ginzburg — Landau theory
Superconductor, Gorkov equations 444 466
Superconductor, ground-state correlation function 337p
Superconductor, ground-state energy 335
Superconductor, heat capacity 320 416 420 451—454
Superconductor, Helmholtz free energy 431 451 453 474p
Superconductor, isotope effect 320 417 448 476p
Superconductor, local 427
Superconductor, London 427
Superconductor, matrix formulation 443—444
Superconductor, Meissner effect 414 421 423 457 459—460
Superconductor, mixed state 415n 439
Superconductor, model hamiltonian 441
Superconductor, nonlocal 427
Superconductor, numerical values, tables 422 448
Superconductor, order parameter 431
Superconductor, penetration length 427 434 472 475p
Superconductor, penetration length, general definition 429
Superconductor, penetration length, local limit 427 429 460
Superconductor, penetration length, nonlocal limit 429—430 460 461—463
Superconductor, penetration length, table 422
Superconductor, persistent currents 415—416
Superconductor, phase transition 431
Superconductor, Pippard 427 461—463
Superconductor, relation to Hartree — Fock theory 439—441
Superconductor, self-consistency condition 444 446
Superconductor, spin susceptibility 477p
Superconductor, stability of Meissner state 430
Superconductor, strong-coupling 44n0
Superconductor, surface energy 430 436—438
Superconductor, temperature Green’s function 442—444
Superconductor, thermodynamic potential 449—454
Superconductor, type I and type II 438—439 475p
Superconductor, ultrasonic attenuation 449 478p
Superconductor, uniform medium 444—454
Superconductor, variational calculation of ground state 336 337p
Supercurrent 432 472—474 476p
Superelectron density 423 431 459—460
Superfluid density 481—482 487 495
Supermultiplets 548 549n 558
Surface energy, in Bose system 497—498 502p
Surface energy, in superconductors 430 436—438
Surface energy, of nuclei 350
susceptibility 174 254p 309p 310p
Symmetry energy of nuclei 350 386p
Tadpole diagram 108 154
Tamm — Dancoff approximation 565—566
Temperature 34
Temperature correlation function 300
Temperature Green’s function 228 262
Temperature Green’s function, analytic continuation to real-time Green’s function 297—298
Temperature Green’s function, and proper self-energy 251
Temperature Green’s function, conservation of discrete frequency 246
Temperature Green’s function, Feynman rules, in coordinate space 242—243
Temperature Green’s function, Feynman rules, in momentum space 244—248
Temperature Green’s function, for bosons 491
Temperature Green’s function, for noninteracting system 232—234 245—246 298
Temperature Green’s function, for normal state 468
Temperature Green’s function, for superconductors 442—444
Temperature Green’s function, Fourier series for 244—245
Temperature Green’s function, Hartree — Fock approximation 257
Temperature Green’s function, in interaction picture 235—236
Temperature Green’s function, Lehmann representation 297
Temperature Green’s function, periodicity of 236—237 244—245
Temperature Green’s function, relation to observables 247 252 261—262
Temperature Green’s function, weight function 296—297 309p
Tensor force in nuclear matter 367 375 386p
Tensor operator 343
Thermal wavelength 277 304 306
Thermionic emission 49p
Thermodynamic limit 22 75 78 199 489
Thermodynamic potential 34—35 268—269 274 290p 327
Thermodynamic potential, coupling-constant integration for 231—232
Thermodynamic potential, for bosons 37 38 202 207
Thermodynamic potential, for electron gas 268 273—275 278 284 290p
Thermodynamic potential, for fermions 38 329—332
Thermodynamic potential, for phonons 393
Thermodynamic potential, in finite nuclei 528—537
Thermodynamic potential, of superconductor 449—454
Thermodynamic potential, relation, to Brueckner — Goldstone theory 288—289
Thermodynamic potential, relation, to temperature Green’s function 232 247 252
Thermodynamic potential, ring contribution 274—275 281—286
Thermodynamics, of magnetic systems 418
Thermodynamics, review of 34
Thomas — Fermi theory 177—178 195p 386p 575
Thomas — Fermi wavenumber 167 176 178 182 397
Time-development operator 56—58
Time-ordered density correlation function 174 175
Time-ordered product of operators 58 65 86—87
Transition matrix elements 540 543
Transition temperature of interacting Bose gas 259—261 493
Translational invariance 73—74
Transverse part of vector field 454
Two-fluid model 481
Two-particle correlations 191—192
Two-particle Green’s function 116p 253p
Ultrasonic attenuation 411p 449 478p
Uniform rotation 483—484 500p
Uniform system 69 190 214 292 321
Vacuum state 13 201
Variational Principle 29 336 337p 353 502p
Vector potential 424 425—428 431—433 435—437 454—456 459 465 468
Velocity potential 482 495
Vertex parts 402—406 411p
Vortices in He II 482—484 500p 502p
Vortices in He II, energy/unit length 484 499
Vortices in He II, vortex core 484 498—499
Wave functions, Dirac 188
Wave functions, for condensate see Condensate wave
Wave functions, for Ginzburg — Landau theory 471
Wave functions, many-body 5—8 16
Wave functions, scattering 129 138—139 380
Wave functions, single particle 5
Wave functions, single particle, Hartree — Fock 352—353 503 508—511 541 558—559 567
Wave functions, single particle, spin and isospin 21 353
Weak interactions 566
White-dwarf stars 49 50p
Wick’s theorem 83—92 327 399 441 506 529 560
Wick’s theorem, at finite temperature 234—241 441
Wick’s theorem, for bosons 203 223p
Wigner force 354
Wigner lattice 31 398n
Wigner — Eckart theorem 505 521 544 586—587
Wigner’s supermultiplet theory 549n
Zero sound 183—187 195p 196p
Zero sound, compared to plasma oscillations 186
Zero sound, damping 187 195p 310p
Zero sound, dispersion relation 183—184
Zero sound, in liquid 187
Zero sound, spin-wave analog 196p
Zero sound, velocity of 185—187
Zero-point energy 41 393
“Healing distance” 366 376
Ðåêëàìà