Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Quantum theory of many-particle systemsÀâòîðû:   Fetter A.L., Walecka J.D. Àííîòàöèÿ:  "Singlemindedly devoted to its job of educating potential many-particle theorists ... deserves to become the standard text in the field." — "Physics Today. "The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy." — "Endeavor. A self-contained treatment of nonrelativistic many-particle systems, this text discusses both formalism and applications. Chapters on second quantization and statistical mechanics introduce ground-state (zero-temperature) formalism, which is explored by way of Green's functions and field theory (fermions), Fermi systems, linear response and collective modes, and Bose systems. Finite-temperature formalism is examined through field theory at finite temperature, physical systems at finite temperature, and real-time Green's functions and linear response. Additional topics cover canonical transformations and applications to physical systems in terms of nuclear matter, phonons and electrons, superconductivity, and superfluid helium as well as applicati
ßçûê:  Ðóáðèêà:  Ôèçèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  2003Êîëè÷åñòâî ñòðàíèö:  601Äîáàâëåíà â êàòàëîã:  14.09.2005Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Sum rules 191—192 196p 296 577p Sums over states replaced by integrals 26 38 394 Superconductor, alloys 415n 425 427 Superconductor, and Bose — Einstein condensation 441 446 476p Superconductor, and electron-phonon interaction 444 448 476p Superconductor, and electron-phonon interaction, Dyson’s equation 476p Superconductor, and electron-phonon interaction, phonon propagator 477—478p Superconductor, Bogoliubov equations 477p Superconductor, chemical potential 334—335 453n Superconductor, coherence length 422 426 433 472 Superconductor, condensation energy of 419 453 Superconductor, Cooper pairs 320—326 417 441 Superconductor, critical current 46n0 476p Superconductor, critical field 415 451 453 474p Superconductor, critical field, lower and upper 438 439 475p Superconductor, effective interaction 448 476p Superconductor, effective mass and charge 431 Superconductor, energy gap 330 417 447—449 Superconductor, entropy 419 476p Superconductor, excitation spectrum 334 Superconductor, experimental facts 414—417 Superconductor, films 474p 476p Superconductor, flux quantization 415—416 425 Superconductor, gap equation 333 446—449 Superconductor, gap function 443 466—474 489 Superconductor, gapless 417n 46n0 Superconductor, gauge invariance 444 454 Superconductor, Ginzburg — Landau theory see Ginzburg — Landau theory Superconductor, Gorkov equations 444 466 Superconductor, ground-state correlation function 337p Superconductor, ground-state energy 335 Superconductor, heat capacity 320 416 420 451—454 Superconductor, Helmholtz free energy 431 451 453 474p Superconductor, isotope effect 320 417 448 476p Superconductor, local 427 Superconductor, London 427 Superconductor, matrix formulation 443—444 Superconductor, Meissner effect 414 421 423 457 459—460 Superconductor, mixed state 415n 439 Superconductor, model hamiltonian 441 Superconductor, nonlocal 427 Superconductor, numerical values, tables 422 448 Superconductor, order parameter 431 Superconductor, penetration length 427 434 472 475p Superconductor, penetration length, general definition 429 Superconductor, penetration length, local limit 427 429 460 Superconductor, penetration length, nonlocal limit 429—430 460 461—463 Superconductor, penetration length, table 422 Superconductor, persistent currents 415—416 Superconductor, phase transition 431 Superconductor, Pippard 427 461—463 Superconductor, relation to Hartree — Fock theory 439—441 Superconductor, self-consistency condition 444 446 Superconductor, spin susceptibility 477p Superconductor, stability of Meissner state 430 Superconductor, strong-coupling 44n0 Superconductor, surface energy 430 436—438 Superconductor, temperature Green’s function 442—444 Superconductor, thermodynamic potential 449—454 Superconductor, type I and type II 438—439 475p Superconductor, ultrasonic attenuation 449 478p Superconductor, uniform medium 444—454 Superconductor, variational calculation of ground state 336 337p Supercurrent 432 472—474 476p Superelectron density 423 431 459—460 Superfluid density 481—482 487 495 Supermultiplets 548 549n 558 Surface energy, in Bose system 497—498 502p Surface energy, in superconductors 430 436—438 Surface energy, of nuclei 350 susceptibility 174 254p 309p 310p Symmetry energy of nuclei 350 386p Tadpole diagram 108 154 Tamm — Dancoff approximation 565—566 Temperature 34 Temperature correlation function 300 Temperature Green’s function 228 262 Temperature Green’s function, analytic continuation to real-time Green’s function 297—298 Temperature Green’s function, and proper self-energy 251 Temperature Green’s function, conservation of discrete frequency 246 Temperature Green’s function, Feynman rules, in coordinate space 242—243 Temperature Green’s function, Feynman rules, in momentum space 244—248 Temperature Green’s function, for bosons 491 Temperature Green’s function, for noninteracting system 232—234 245—246 298 Temperature Green’s function, for normal state 468 Temperature Green’s function, for superconductors 442—444 Temperature Green’s function, Fourier series for 244—245 Temperature Green’s function, Hartree — Fock approximation 257 Temperature Green’s function, in interaction picture 235—236 Temperature Green’s function, Lehmann representation 297 Temperature Green’s function, periodicity of 236—237 244—245 Temperature Green’s function, relation to observables 247 252 261—262 Temperature Green’s function, weight function 296—297 309p Tensor force in nuclear matter 367 375 386p Tensor operator 343 Thermal wavelength 277 304 306 Thermionic emission 49p Thermodynamic limit 22 75 78 199 489 Thermodynamic potential 34—35 268—269 274 290p 327 Thermodynamic potential, coupling-constant integration for 231—232 Thermodynamic potential, for bosons 37 38 202 207 Thermodynamic potential, for electron gas 268 273—275 278 284 290p Thermodynamic potential, for fermions 38 329—332 Thermodynamic potential, for phonons 393 Thermodynamic potential, in finite nuclei 528—537 Thermodynamic potential, of superconductor 449—454 Thermodynamic potential, relation, to Brueckner — Goldstone theory 288—289 Thermodynamic potential, relation, to temperature Green’s function 232 247 252 Thermodynamic potential, ring contribution 274—275 281—286 Thermodynamics, of magnetic systems 418 Thermodynamics, review of 34 Thomas — Fermi theory 177—178 195p 386p 575 Thomas — Fermi wavenumber 167 176 178 182 397 Time-development operator 56—58 Time-ordered density correlation function 174 175 Time-ordered product of operators 58 65 86—87 Transition matrix elements 540 543 Transition temperature of interacting Bose gas 259—261 493 Translational invariance 73—74 Transverse part of vector field 454 Two-fluid model 481 Two-particle correlations 191—192 Two-particle Green’s function 116p 253p Ultrasonic attenuation 411p 449 478p Uniform rotation 483—484 500p Uniform system 69 190 214 292 321 Vacuum state 13 201 Variational Principle 29 336 337p 353 502p Vector potential 424 425—428 431—433 435—437 454—456 459 465 468 Velocity potential 482 495 Vertex parts 402—406 411p Vortices in He II 482—484 500p 502p Vortices in He II, energy/unit length 484 499 Vortices in He II, vortex core 484 498—499 Wave functions, Dirac 188 Wave functions, for condensate see Condensate wave Wave functions, for Ginzburg — Landau theory 471 Wave functions, many-body 5—8 16 Wave functions, scattering 129 138—139 380 Wave functions, single particle 5 Wave functions, single particle, Hartree — Fock 352—353 503 508—511 541 558—559 567 Wave functions, single particle, spin and isospin 21 353 Weak interactions 566 White-dwarf stars 49 50p Wick’s theorem 83—92 327 399 441 506 529 560 Wick’s theorem, at finite temperature 234—241 441 Wick’s theorem, for bosons 203 223p Wigner force 354 Wigner lattice 31 398n Wigner — Eckart theorem 505 521 544 586—587 Wigner’s supermultiplet theory 549n Zero sound 183—187 195p 196p Zero sound, compared to plasma oscillations 186 Zero sound, damping 187 195p 310p Zero sound, dispersion relation 183—184 Zero sound, in liquid        187 Zero sound, spin-wave analog 196p Zero sound, velocity of 185—187 Zero-point energy 41 393 “Healing distance” 366 376 
                            
                     
                  
			Ðåêëàìà