Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Quantum theory of many-particle systems
Àâòîðû: Fetter A.L., Walecka J.D.
Àííîòàöèÿ: "Singlemindedly devoted to its job of educating potential many-particle theorists ... deserves to become the standard text in the field." — "Physics Today. "The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy." — "Endeavor. A self-contained treatment of nonrelativistic many-particle systems, this text discusses both formalism and applications. Chapters on second quantization and statistical mechanics introduce ground-state (zero-temperature) formalism, which is explored by way of Green's functions and field theory (fermions), Fermi systems, linear response and collective modes, and Bose systems. Finite-temperature formalism is examined through field theory at finite temperature, physical systems at finite temperature, and real-time Green's functions and linear response. Additional topics cover canonical transformations and applications to physical systems in terms of nuclear matter, phonons and electrons, superconductivity, and superfluid helium as well as applicati
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2003
Êîëè÷åñòâî ñòðàíèö: 601
Äîáàâëåíà â êàòàëîã: 14.09.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Fermi momentum 26
Fermi motion 193
Fermi sea 28 71
Fermi surface 179—180 306 334
Fermi velocity 185
Fermi wavenumber 27 46
Fermi-gas model for nuclear matter 352—357
fermions 15—19
Fermi’s “Golden Rule” 189
ferromagnetism 32p
Feynman diagrams 96 378 399—401 559—562
Feynman diagrams, at finite temperature 241—250
Feynman diagrams, in coordinate space 92—100
Feynman diagrams, in momentum space 100—105
Feynman rules, at finite temperature 242—243 244—248
Feynman rules, for bosons 208—210 223p
Feynman rules, for electron-phonon system 399—401
Feynman rules, for fermions 97—99 102—103
Feynman — Dyson perturbation theory 112 113 115 399—406
Field operators 19 65 71
Field operators, commutation relations of 19
Field operators, creation part 86
Field operators, destruction part 86
Field operators, equation of motion for 68 230
Field operators, for bosons 200
Finite-temperature formalism, $T 0
First quantization, relation to second quantization 15
First sound 184 481
Fission 351
Fluctuations 200 337p 527—528
Flux quantization 415—416 425 435—436
Flux quantum 416 435
Fluxoid 423—425 474p
Forward scattering 133
Free energy, Gibbs 34
Free energy, Gibbs, of magnetic systems 418
Free energy, Gibbs, of superconductor 432
Free energy, Helmholtz 34
Free energy, Helmholtz, of classical electron gas 280
Free energy, Helmholtz, of magnetic systems 418
Free energy, Helmholtz, of noninteracting phonons 393
Free energy, Helmholtz, of quasiparticles in He II 485
Free energy, Helmholtz, of superconductor 431 451 453 474p
Free surface in rotating He II 483
Frequency sums 248—250 263 281
Friedel oscillations 179
Galitskii’s equations 139—146 358 370 373 376 567
Galitskii’s equations, and Bethe — Goldstone equations 377—383
Gamma function 579—580
gap equation 331 492
Gap equation, in nuclear matter 383—385
Gap equation, infinite nuclei 531 535
Gap equation, normal solutions 332 531
Gap equation, superconducting solutions 333 446—449 475p
Gap function 443 466—474 489
Gapless superconductors 417n 46n0
Gauge invariance 444 454
Gell — Mann and Low theorem 61—64 113 208n
Giant dipole resonance 552
Ginzburg — Landau parameter 435 472
Ginzburg — Landau theory 430—439 474
Ginzburg — Landau theory, boundary conditions 432
Ginzburg — Landau theory, coherence length 433 472
Ginzburg — Landau theory, determination of parameters 471—472
Ginzburg — Landau theory, field equations 432 496n
Ginzburg — Landau theory, flux quantization 435—436
Ginzburg — Landau theory, in one dimension 437
Ginzburg — Landau theory, microscopic derivation of 466—474
Ginzburg — Landau theory, penetration length 434 472 475p
Ginzburg — Landau theory, supercurrent 432
Ginzburg — Landau theory, surface energy 436—438
Ginzburg — Landau theory, wave function 471
Goldstone diagrams 112 118p 354 376 381
Goldstone’s theorem 111—116 387p
Gorkov equations 444 466
grand canonical ensemble 33 228
Grand canonical hamiltonian 228 256
Grand partition function 36 228 308p
Green’s function 208
Green’s function, heat capacity 42 43
Green’s function, number density 39
Green’s functions at zero temperature 64—65 205 213 228 292 400
Green’s functions at zero temperature, advanced 77
Green’s functions at zero temperature, analytic properties 76—79
Green’s functions at zero temperature, as zero-temperature limit of real-time Green’s function 293 296 308p
Green’s functions at zero temperature, asymptotic behavior 79 297
Green’s functions at zero temperature, at equal times 94
Green’s functions at zero temperature, bosons 203 215
Green’s functions at zero temperature, bosons, anomalous 213
Green’s functions at zero temperature, bosons, hard-sphere Bose gas 220
Green’s functions at zero temperature, bosons, ideal Bose gas 208
Green’s functions at zero temperature, bosons, matrix Green’s function 213—214 501p
Green’s functions at zero temperature, diagrammatic analysis in perturbation theory 92—111
Green’s functions at zero temperature, equation of motion 117p 411p
Green’s functions at zero temperature, Feynman rules for, at finite temperature see Temperature Green’s functions)
Green’s functions at zero temperature, Feynman rules for, in momentum space 102—103
Green’s functions at zero temperature, Feynman rules for, incoordinate space 97—99
Green’s functions at zero temperature, for electron-phonon system 399—406
Green’s functions at zero temperature, for ideal Fermi gas 70—72
Green’s functions at zero temperature, for interacting Fermi gas 145
Green’s functions at zero temperature, for phonons 400 402—404 410p 411p
Green’s functions at zero temperature, frequency dependence of 75
Green’s functions at zero temperature, Hartree — Fock approximation 124
Green’s functions at zero temperature, in interaction picture 85
Green’s functions at zero temperature, matrix structure 75—76
Green’s functions at zero temperature, perturbation theory for 83—85 96
Green’s functions at zero temperature, physical interpretation 79—82
Green’s functions at zero temperature, real-time, at finite temperature see Real-time Green’s functions
Green’s functions at zero temperature, relation to observables 66—70
Green’s functions at zero temperature, retarded 77
Gross — Pitaevskii equation 496
Ground state in quantum-field theory 61
Ground-state energy, and Green’s functions 68
Ground-state energy, and proper self-energy 109
Ground-state energy, and thermodynamic potential 289
Ground-state energy, electron-phonon system 399 411p
Ground-state energy, for bosons 31p 201 207 318
Ground-state energy, for bosons, hard-sphere bose gas 221—222
Ground-state energy, Hartree — Fock approximation 126
Ground-state energy, of electron gas 25—26 32p 151—154 281 289
Ground-state energy, of hard-sphere Fermi gas 132 135 148 374 387p
Ground-state energy, of ideal Fermi gas 27 46
Ground-state energy, of nuclear matter 353—355 366—377
Ground-state energy, shift of 70 109 111
Ground-state energy, superconducting and normal states 335
Ground-state energy, time-independent perturbation theory 31n 112 118p
Group velocity 183
Hamiltonian, first-quantized 4
Hamiltonian, models for physical systems, bosons 200 315
Hamiltonian, models for physical systems, electron gas 21—25
Hamiltonian, models for physical systems, electron-phonon 333 391—393 396—398
Hamiltonian, models for physical systems, pairing force, in finite nuclei 523
Hamiltonian, models for physical systems, superconductors 439—441
Hamiltonian, second-quantized 15 18
Hard-sphere Bose gas 218—223 317—319 480-481
Hard-sphere Bose gas, chemical potential 220 221—222
Hard-sphere Bose gas, depletion 221 317
Hard-sphere Bose gas, Green’s function 220
Hard-sphere Bose gas, ground-state energy 221—222 318—319
Hard-sphere Bose gas, other physical properties 222
Hard-sphere Bose gas, proper self-energies 219
Hard-sphere Fermi gas, chemical potential 147
Hard-sphere Fermi gas, effective mass 148 169p 370—371
Hard-sphere Fermi gas, effective two-body interaction 136—137
Hard-sphere Fermi gas, effective two-body wave function 137—139
Hard-sphere Fermi gas, ground-state energy 135 148—149 169p 374 387p 480
Hard-sphere Fermi gas, heat capacity 148
Hard-sphere Fermi gas, proper self-energy 136 142—146 168p
Hard-sphere Fermi gas, single-particle excitations 146—148
Hard-sphere Fermi gas, zero sound 195p 196p
harmonic oscillator 12 393 509—511 569—571
Hartree equations 127 490
Hartree — Fock potential 355—357 511 568
Hartree — Fock theory 121—127 167p 168p 399 475p 504—508 575
Hartree — Fock theory, at finite temperature 255—259 262—267 308p 415p
Hartree — Fock theory, equations 126—127 257—258 507
Hartree — Fock theory, equations, solution for uniform medium 127 258—259
Hartree — Fock theory, for bosons 259—261
Hartree — Fock theory, Green’s functions 124 168p 257 308p 440—441 475p
Hartree — Fock theory, ground-state properties 126—127 332
Hartree — Fock theory, of finite nuclei 575
Hartree — Fock theory, proper self-energy 121—122 125 255—258
Hartree — Fock theory, relation to BCS theory 439—441
Hartree — Fock theory, self-consistency 121—122 127 258—259 265
Hartree — Fock theory, single-particle energy 127 258 330 507 510 513 539 556
Hartree — Fock wave functions 352—353 503 508—511 541 558—559 567
Hartree — Fock, and temperature Green’s function 230 247 252
Hartree — Fock, at finite temperature 258
Hartree — Fock, of ideal quantum gas 39 46 49p
He II 44 481—488
He II, critical velocity 482 488
He II, entropy 486
He II, heat capacity 44 484 486
He II, phase transition of 44 481
He II, quantized vortices 482—484 488
He II, quasiparticle model 484—488
He II, quasiparticle model, phonons 484—488
He II, quasiparticle model, rotons 484—488
He II, surface tension 498
He II, two-fluid model 481
Heat capacity, Debye theory of solids 393—395
Heat capacity, of electron gas 269 289—290p
Heat capacity, of hard-sphere Fermi gas 148
Heat capacity, of He II 44 484 486
Heat capacity, of ideal Bose gas 42 43
Heat capacity, of ideal Fermi gas 48
Heat capacity, of imperfect Fermi gas 261—267
Heat capacity, of metals, Hartree — Fock approximation 269 289p
Heat capacity, of metals, normal state 295n
Heat capacity, of metals, superconducting state 320 416 420 451—454
Heisenberg picture 58—59 73 173 189
Heisenberg picture, for bosons 204
Heisenberg picture, ground state 65 558
Heisenberg picture, modified, for finite temperatures 228 234
Heisenberg picture, operators 65 115 213 292
Heisenberg picture, relation to interaction picture 83—85
High-energy nucleon-nucleus scattering 566
Hole-hole scattering 149—150 381
Holes 70—71 504—508 514 520 524 538—543 558-566
Homogeneous (uniform) system 69 190 214 292 321
Hugenholtz — Pines relation 216 220 222 223p
Hydrostatic equilibrium 50p 111 195p 386p
Ideal Bose gas, chemical potential 39—41 43
Ideal Bose gas, critical temperature 40
Ideal Bose gas, equation of state 39 42
Ideal Bose gas, occupation number 37
Ideal Bose gas, phase transition 44
Ideal Bose gas, statistical mechanics 37—44
Ideal Bose gas, superfluidity 493
Ideal Bose gas, temperature Green’s function 232—234 245—246 501p
Ideal Bose gas, thermodynamic potential 37 38
Ideal Bose gas, two-dimensional 49p
Ideal Fermi gas, chemical potential 45 48 75 284—285
Ideal Fermi gas, density 26—27 45—47 352
Ideal Fermi gas, equation of state 45 46 47—48
Ideal Fermi gas, Fermi energy 46
Ideal Fermi gas, ground-state energy 26 46
Ideal Fermi gas, heat capacity 48 266—267
Ideal Fermi gas, occupation number 38
Ideal Fermi gas, paramagnetic susceptibility 49p 254p 309p
Ideal Fermi gas, statistical mechanics 45—49
Ideal Fermi gas, temperature Green’s function 232—234 245—246
Ideal Fermi gas, thermodynamic potential 38 278 285
Ideal Fermi gas, two-particle correlations 192
Imaginary-time operator 228
Imperfect Bose gas see Hard-sphere Bose gas; Interacting Bose gas
Imperfect Fermi gas see Hard-sphere Fermi gas; Interacting Fermi gas
Impulsive perturbation 180 184 307
Independent-pair approximation 357—377 480
Independent-pair approximation, ground-state energy 368
Independent-pair approximation, justification 376
Independent-pair approximation, self-consistency 368
Independent-pair approximation, single-particle potential 368
Independent-particle model of the nucleus 352—357 366
Independent-particle model of the nucleus, justification 376
Integral kernel for superconductor 456 458
Integral kernel for superconductor, in Pippard limit 463
Integrals, definite 579—581
Intensive variables 35
Interacting Bose gas 215—218 219 314—319
Interacting Bose gas, chemical potential 216 336p
Interacting Bose gas, depletion 218 317
Interacting Bose gas, excitation spectrum 217 218 317
Interacting Bose gas, ground-state energy 318 336p
Interacting Bose gas, moving condensate 223p 336p 501p
Interacting Bose gas, near 259—261 493
Interacting Bose gas, proper self-energies 215
Interacting Bose gas, sound velocity 217 317
Interacting Bose gas, superfluidity 493
Interacting Fermi gas 128—150 261—267 326-336
Interacting Fermi gas, distribution function 333—334
Interacting Fermi gas, effective mass 167p 266
Interacting Fermi gas, entropy 265—266
Interacting Fermi gas, ground-state energy 27 118p 168p 319
Interacting Fermi gas, heat capacity 261—267
Interacting Fermi gas, magnetization 32p 169p 310p
Interacting Fermi gas, proper polarization 169p 196p
Interacting Fermi gas, zero sound 183—187 196p
Interaction picture 54—58
Interaction picture, for bosons 207—208
Interaction picture, for finite temperature 234—236
Internal energy 34 247 251
Interparticle spacing 25 27 349 366 389 394 397
Irreducible diagram 403—405
Irreducible tensor operator 505 508 543 586
Irrotational flow 425 481
Isotope effect 320 417 448 476p
Isotopic spin 353 508 546
Josephson effect 435n
kinetic energy 4 23 67 205 229
Kohn effect 411p
Kronecker delta 23
Ladder diagrams 131—139 358 378—379 567
Lagrange multiplier 203 486n 500p
Laguerre polynomials 509
Lambda point 481
Landau critical velocity 488 493
Landau damping 308
Landau diamagnetism 462 477p
Landau’s Fermi liquid theory 187
Landau’s quasiparticle model 484—488
Legendre polynomials 516
Legendre transformation 34 336p
Lehmann representation, for bosons 214—215
Lehmann representation, for correlation functions 299 300—301 456
Lehmann representation, for Green’s functions at zero temperature 66 72—79 107
Lehmann representation, for polarization propagator 117p 174 300—301 559
Lehmann representation, for real-time Green’s function 293—294
Lehmann representation, for temperature Green’s function 297
Lifetime of excitations 81—82 119p 146—147 291 308 309p 310p
LIMIT 288—289 293 296 308p
Linear response 172—175
Linear response, at finite temperature 298—303
Linear response, electron scattering 188—194
Linear response, in finite nuclei 566 577p
Linear response, neutron scattering 196—197p
Linear response, of charged Bose gas 501p
Linear response, of electron gas 175—183 303—308
Linear response, of superconductor 454—466
Linear response, to weak magnetic field 309p 454—466 477p
Ðåêëàìà