|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Gorenstein D., Lyons R., Solomon R. — The Classification of the Finite Simple Groups |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Strongly closed subgroup 61
Strongly closed type p-component preuniqueness subgroup 93
Strongly embedded subgroup see “Uniqueness subgroups”
Strongly p-embedded subgroup see “Uniqueness subgroups”
Strongly Z-embedded subgroup see “Uniqueness subgroups”
Stroth, G. 5 37 38 43 53 98—99 107 130
Subterminal (x,K)-pair 64
Subterminal pair 64—66
Suz 9 11
Suzuki group 10
Suzuki groups 3 10
Suzuki, M. 10 38 46 47 49
Symmetric group 6
Symplectic pair 117
Symplectic pair, faithful, of -type, trivial 117
Symplectic pair: faithful, trivial 117
Symplectic type 116
Symplectic type 2-group 116
Tanaka, Y. 37
Target group 27 54—55 86—87
Target group in 89
Target group of Lie type 76– 77
Target group of Lie type of large Lie rank 63—68 71 76
Target group of Lie type of Lie rank 1 77 110—113
Target group of Lie type of small Lie rank 77 110—116
Target group of Lie type, , , , , , q odd 61—63
Target group , , 63—68 76–
Target group , , , 68—70
Target group , , 77 111—112 114—116
Target group , quasithin 77
Target group , sporadic 77 87
Target group , sporadic, large sporadic 116—117
Target group , the 8 families 86
Terminal component 23 81
Theorems , , 92
Theorems 104–106
Theorems, Alperin — Brauer — Gorenstein — Walter classification of groups of 2-rank 2 39 41
Theorems, Alperin —Goldschmidt conjugation theorem 97 122
Theorems, Aschbacher classical involution theorem 41—43
Theorems, Aschbacher proper 2-generated core theorem 89
Theorems, Aschbacher uniqueness case theorem 43 92
Theorems, Aschbacher — Bender — Suzuki strongly Z-embedded subgroup theorem 88
Theorems, Aschbacher — Gilman component theorem 39 40 52 75
Theorems, Aschbacher — Gilman component theorem, generalized to odd primes 75—76
Theorems, Baumann — Glauberman — Niles theorem 50 130—131
Theorems, Baumann — Glauberman — Niles theorem, revision of 50
Theorems, Bender -theorem 17 138
Theorems, Bender uniqueness theorem 123
Theorems, Bender — Suzuki strongly embedded subgroup theorem 30—31 33 36 38 52
Theorems, Bender — Suzuki strongly embedded subgroup theorem for K-proper groups 75
Theorems, Bender — Thompson signalizer lemma 116
Theorems, Brauer — Suzuki quaternion theorem 52
Theorems, Burnside -theorem 30
Theorems, classification theorem 6 79
Theorems, classification theorem, comparison of new and old proofs 41–44 55 63 72 74–76 98
Theorems, classification theorem, four-part division 58–59
Theorems, classification theorem, main logic 106
Theorems, classification theorem, stages of the proof 61 106–121
Theorems, Curtis — Tits theorem 35 63 67 113 115
Theorems, Curtis — Tits theorem, variations for classical groups 35 63 113 115
Theorems, Feit — Thompson theorem see “Odd order theorem”
Theorems, Fong — Seitz classification of split (B, N)-pairs of rank 2 63 138
Theorems, Gilman — Griess recognition theorem for groups of Lie type 35 67 71
Theorems, Glauberman -theorem 30 31 36 38 43 48 79 122 135
Theorems, Glauberman ZJ-theorem 26 38
Theorems, global C(G, S)-theorem 38 53
Theorems, Goldschmidt strongly closed abelian 2-subgroup theorem 43 89
Theorems, Gorenstein — Harada sectional 2-rank at most 4 theorem 39 42 43
Theorems, Gorenstein — Walter dihedral Sylow 2-subgroup classification 50 74
Theorems, Gorenstein — Walter dihedral Sylow 2-subgroup classification, revision by Bender and Glauberman 50 74
Theorems, Hall — Higman theorem B 26
Theorems, Holt’s Theorem 89
Theorems, Jordan — Holder theorem 12ff.
Theorems, local C(X, T )-theorem 50 96–97 129–131
Theorems, Mason quasithin theorem 37 41
Theorems, odd order theorem 30 31 36 38–39 48 79 104 134 135
Theorems, odd order theorem, revision of 48 74 123
Theorems, p-component uniqueness theorems 30–31 38 53 65 90–92 118
Theorems, Schur — Zassenhaus theorem 24
Theorems, signalizer functor theorems 49 124
Theorems, Solomon maximal 2-component theorem 39
Theorems, theorem 5 86 92 106—108 129 131
Theorems, theorem , corollary 92
| Theorems, theorem , stages 1—3 98—99
Theorems, theorem 104
Theorems, theorem , stages 1–4 106–108
Theorems, theorem 104
Theorems, theorem , stages 1–4 110–113
Theorems, theorem 104
Theorems, theorem , stages 1–3 113
Theorems, theorem 105
Theorems, theorem , stages 1–4 114–116
Theorems, theorem 105
Theorems, theorem , stages 1–4 116–118
Theorems, theorem 106
Theorems, theorem , stages 1–2 118
Theorems, theorem 106
Theorems, theorem , stages 1–5 118–121
Theorems, theorem 5 90 99 129
Theorems, theorem , stages 1—3 97—98
Theorems, theorem PS 92
Theorems, theorem SA 89 97
Theorems, theorem SE 89—90
Theorems, theorem SE, stages 1—2 95—96
Theorems, theorem SF 89
Theorems, theorem SZ 88—89
Theorems, theorem TS 92 114
Theorems, theorem U(2) 89 97 106
Theorems, Thompson -lemma 21
Theorems, Thompson dihedral lemma 134
Theorems, Thompson factorization theorem 26 130
Theorems, Thompson N-group classification theorem 38—40 43
Theorems, Thompson order formula 114 136
Theorems, Thompson replacement theorem 26 130
Theorems, Thompson transfer lemma 55 104 122 128
Theorems, Three subgroup lemma 17
Theorems, Timmesfeld root involution theorem 42—43
Theorems, Tits classification of spherical buildings of rank at least 3 73
Theorems, Walter classification of groups with abelian Sylow 2-subgroups 74
Theorems, Walter classification of groups with abelian Sylow 2-subgroups, revision by Bender 74
Thompson subgroup 26 130
Thompson, J. G. 37 39—40 43 48 49 107—108 130
Tightly embedded subgroup 39 43
Timmesfeld, F. G. 37 39 40
Tits system see “(B
Tits, J. 10 25 34 137
TRANSFER 29 31 74 107
Triality 10
Twisted group, untwisted group 7
Uniqueness case 5 38 43 53
Uniqueness grid 79 83 84 87—89
Uniqueness subgroups, -uniqueness subgroup 94
Uniqueness subgroups, 2-uniqueness subgroup 82 87—89
Uniqueness subgroups, near component 2-local uniqueness subgroup 97
Uniqueness subgroups, p-component preuniqueness subgroup 90—93
Uniqueness subgroups, p-component preuniqueness subgroup of strongly closed type 93
Uniqueness subgroups, p-component preuniqueness subgroup, controlling rank 1 or 2 fusion 91—92
Uniqueness subgroups, p-component preuniqueness subgroup, standard 91—92
Uniqueness subgroups, p-component preuniqueness subgroup, wreathed 93
Uniqueness subgroups, p-uniqueness subgroup, p odd 52—53 82
Uniqueness subgroups, p-uniqueness subgroup, p odd, strong p-uniqueness subgroup 52—53 58 63 68 82—83 92—96 99 106
Uniqueness subgroups, strongly -embedded subgroup 87–89 96
Uniqueness subgroups, strongly embedded subgroup 30–31 75 82 87–89 95–96
Uniqueness subgroups, strongly p-embedded subgroup 31 82 91–92
Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup 91–94
Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup, almost p-constrained 93
Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup, of strongly closed type 93
Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup, wreathed 93
Uniqueness subgroups, weakly -embedded subgroup 89
Uniqueness subgroups, {2,p}-uniqueness subgroup 53 98—99
Universal covering group 17
Universal version 33
Walter, J. H. 29 38–39 124 126 127
Ward, H. 49
Weak closure method 43
Weakly -embedded subgroup see “Uniqueness subgroups”
Weyl group 33
Wide -type 116
Wong, W. 35
Wreathed p-component preuniqueness subgroup 93
Y-compatible 71
Yoshida, T. 29
Z(J(P)) 26
[K] 90
{2,p}-uniqueness subgroup 98
{p, q}-parabolic type 107
|
|
|
Ðåêëàìà |
|
|
|