| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Gorenstein D., Lyons R., Solomon R. — The Classification of the Finite Simple Groups |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | Strongly closed subgroup      61 Strongly closed type p-component preuniqueness subgroup      93
 Strongly embedded subgroup      see “Uniqueness subgroups”
 Strongly p-embedded subgroup      see “Uniqueness subgroups”
 Strongly Z-embedded subgroup      see “Uniqueness subgroups”
 Stroth, G.      5 37 38 43 53 98—99 107 130
 Subterminal (x,K)-pair      64
 Subterminal pair      64—66
 Suz      9 11
 Suzuki group      10
 Suzuki groups
  3 10 Suzuki, M.      10 38 46 47 49
 Symmetric group
  6 Symplectic pair      117
 Symplectic pair, faithful, of
  -type, trivial      117 Symplectic pair: faithful, trivial      117
 Symplectic type      116
 Symplectic type 2-group      116
 Tanaka, Y.      37
 Target group
  27 54—55 86—87 Target group
  in  89 Target group
  of Lie type      76– 77 Target group
  of Lie type of large Lie rank      63—68 71 76 Target group
  of Lie type of Lie rank 1      77 110—113 Target group
  of Lie type of small Lie rank      77 110—116 Target group
  of Lie type,  ,  ,  ,  ,  , q odd      61—63 Target group
  ,  ,  63—68 76– Target group
  ,  ,  ,  68—70 Target group
  ,  ,  77 111—112 114—116 Target group
  , quasithin      77 Target group
  , sporadic      77 87 Target group
  , sporadic, large sporadic      116—117 Target group
  , the 8 families    86 Terminal component      23 81
 Theorems
  ,  ,  92 Theorems
  104–106 Theorems, Alperin — Brauer — Gorenstein — Walter classification of groups of 2-rank 2      39 41
 Theorems, Alperin —Goldschmidt conjugation theorem      97 122
 Theorems, Aschbacher classical involution theorem      41—43
 Theorems, Aschbacher proper 2-generated core theorem      89
 Theorems, Aschbacher uniqueness case theorem      43 92
 Theorems, Aschbacher — Bender — Suzuki strongly Z-embedded subgroup theorem      88
 Theorems, Aschbacher — Gilman component theorem      39 40 52 75
 Theorems, Aschbacher — Gilman component theorem, generalized to odd primes      75—76
 Theorems, Baumann — Glauberman — Niles theorem      50 130—131
 Theorems, Baumann — Glauberman — Niles theorem, revision of      50
 Theorems, Bender
  -theorem      17 138 Theorems, Bender uniqueness theorem      123
 Theorems, Bender — Suzuki strongly embedded subgroup theorem      30—31 33 36 38 52
 Theorems, Bender — Suzuki strongly embedded subgroup theorem for K-proper groups      75
 Theorems, Bender — Thompson signalizer lemma      116
 Theorems, Brauer — Suzuki quaternion theorem      52
 Theorems, Burnside
  -theorem      30 Theorems, classification theorem      6 79
 Theorems, classification theorem, comparison of new and old proofs      41–44 55 63 72 74–76 98
 Theorems, classification theorem, four-part division      58–59
 Theorems, classification theorem, main logic      106
 Theorems, classification theorem, stages of the proof      61 106–121
 Theorems, Curtis — Tits theorem      35 63 67 113 115
 Theorems, Curtis — Tits theorem, variations for classical groups      35 63 113 115
 Theorems, Feit — Thompson theorem      see “Odd order theorem”
 Theorems, Fong — Seitz classification of split (B, N)-pairs of rank 2      63 138
 Theorems, Gilman — Griess recognition theorem for groups of Lie type      35 67 71
 Theorems, Glauberman
  -theorem      30 31 36 38 43 48 79 122 135 Theorems, Glauberman ZJ-theorem      26 38
 Theorems, global C(G, S)-theorem      38 53
 Theorems, Goldschmidt strongly closed abelian 2-subgroup theorem      43 89
 Theorems, Gorenstein — Harada sectional 2-rank at most 4 theorem      39 42 43
 Theorems, Gorenstein — Walter dihedral Sylow 2-subgroup classification      50 74
 Theorems, Gorenstein — Walter dihedral Sylow 2-subgroup classification, revision by Bender and Glauberman      50 74
 Theorems, Hall — Higman theorem B      26
 Theorems, Holt’s Theorem      89
 Theorems, Jordan — Holder theorem      12ff.
 Theorems, local C(X, T )-theorem      50 96–97 129–131
 Theorems, Mason quasithin theorem      37 41
 Theorems, odd order theorem      30 31 36 38–39 48 79 104 134 135
 Theorems, odd order theorem, revision of      48 74 123
 Theorems, p-component uniqueness theorems      30–31 38 53 65 90–92 118
 Theorems, Schur — Zassenhaus theorem      24
 Theorems, signalizer functor theorems      49 124
 Theorems, Solomon maximal 2-component theorem      39
 Theorems, theorem
  5 86 92 106—108 129 131 Theorems, theorem
  , corollary  92 
 | Theorems, theorem  , stages      1—3 98—99 Theorems, theorem
  104 Theorems, theorem
  , stages 1–4      106–108 Theorems, theorem
  104 Theorems, theorem
  , stages 1–4      110–113 Theorems, theorem
  104 Theorems, theorem
  , stages 1–3      113 Theorems, theorem
  105 Theorems, theorem
  , stages 1–4      114–116 Theorems, theorem
  105 Theorems, theorem
  , stages 1–4      116–118 Theorems, theorem
  106 Theorems, theorem
  , stages 1–2      118 Theorems, theorem
  106 Theorems, theorem
  , stages 1–5      118–121 Theorems, theorem
  5 90 99 129 Theorems, theorem
  , stages 1—3      97—98 Theorems, theorem PS      92
 Theorems, theorem SA      89 97
 Theorems, theorem SE      89—90
 Theorems, theorem SE, stages 1—2      95—96
 Theorems, theorem SF      89
 Theorems, theorem SZ      88—89
 Theorems, theorem TS      92 114
 Theorems, theorem U(2)      89 97 106
 Theorems, Thompson
  -lemma      21 Theorems, Thompson dihedral lemma      134
 Theorems, Thompson factorization theorem      26 130
 Theorems, Thompson N-group classification theorem      38—40 43
 Theorems, Thompson order formula      114 136
 Theorems, Thompson replacement theorem      26 130
 Theorems, Thompson transfer lemma      55 104 122 128
 Theorems, Three subgroup lemma      17
 Theorems, Timmesfeld root involution theorem      42—43
 Theorems, Tits classification of spherical buildings of rank at least 3      73
 Theorems, Walter classification of groups with abelian Sylow 2-subgroups      74
 Theorems, Walter classification of groups with abelian Sylow 2-subgroups, revision by Bender      74
 Thompson subgroup      26 130
 Thompson, J. G.      37 39—40 43 48 49 107—108 130
 Tightly embedded subgroup      39 43
 Timmesfeld, F. G.      37 39 40
 Tits system      see “(B
 Tits, J.      10 25 34 137
 TRANSFER      29 31 74 107
 Triality      10
 Twisted group, untwisted group      7
 Uniqueness case      5 38 43 53
 Uniqueness grid      79 83 84 87—89
 Uniqueness subgroups,
  -uniqueness subgroup      94 Uniqueness subgroups, 2-uniqueness subgroup      82 87—89
 Uniqueness subgroups, near component 2-local uniqueness subgroup      97
 Uniqueness subgroups, p-component preuniqueness subgroup      90—93
 Uniqueness subgroups, p-component preuniqueness subgroup of strongly closed type      93
 Uniqueness subgroups, p-component preuniqueness subgroup, controlling rank 1 or 2 fusion      91—92
 Uniqueness subgroups, p-component preuniqueness subgroup, standard      91—92
 Uniqueness subgroups, p-component preuniqueness subgroup, wreathed      93
 Uniqueness subgroups, p-uniqueness subgroup, p odd      52—53 82
 Uniqueness subgroups, p-uniqueness subgroup, p odd, strong p-uniqueness subgroup      52—53 58 63 68 82—83 92—96 99 106
 Uniqueness subgroups, strongly
  -embedded subgroup      87–89 96 Uniqueness subgroups, strongly embedded subgroup      30–31 75 82 87–89 95–96
 Uniqueness subgroups, strongly p-embedded subgroup      31 82 91–92
 Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup      91–94
 Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup, almost p-constrained      93
 Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup, of strongly closed type      93
 Uniqueness subgroups, strongly p-embedded subgroup, almost strongly p-embedded subgroup, wreathed      93
 Uniqueness subgroups, weakly
  -embedded subgroup      89 Uniqueness subgroups, {2,p}-uniqueness subgroup      53 98—99
 Universal covering group      17
 Universal version      33
 Walter, J. H.      29 38–39 124 126 127
 Ward, H.      49
 Weak closure method      43
 Weakly
  -embedded subgroup      see “Uniqueness subgroups” Weyl group      33
 Wide
  -type      116 Wong, W.      35
 Wreathed p-component preuniqueness subgroup      93
 Y-compatible      71
 Yoshida, T.      29
 Z(J(P))      26
 [K]      90
 {2,p}-uniqueness subgroup      98
 {p, q}-parabolic type      107
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |