| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Gorenstein D., Lyons R., Solomon R. — The Classification of the Finite Simple Groups |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | |  -balance      125 
  101 
  ,  60 100 
  101 
  101 
  101 
  (central extension)      101 
  6 8 
  ,  ,  ,  7 8 
  ,  7 8 10 
  -property      24 28 40—41 62 123 127 
  -property, partial      30 36 42 64 
  24 
  7 8 
  63 
  22 
  14 
  139 
  ,  ,  9 11 
  ,  ,  ,  ,  7 8 10 
  ,  ,  ,  7 8 10 
  14 
  17 
  ,  ,  ,  9 11 
  ,  ,  7 8 10 
  ,  ,  9 11 
  6 
  7 
  109—121 
  ,  of Lie type of large Lie rank      116 121 
  ,  of Lie type of small Lie rank, of characteristic 2      95—96 115 
  ,  of Lie type of small Lie rank, of characteristic 2 and Lie rank 1      95—96 
  ,  of Lie type of small Lie rank, of odd characteristic      110 112 113 
  ,  sporadic      109 
  ,  ,  121 
  ,  ,  109 114 
  27 
  66 121 
  ,  7 8 10 
  ,  71 
  ,  ,  ,  9 11 
  -type      104 
  -type      105 
  -uniqueness subgroup      94 
  -type      104 
  -balance      127 
  -balance      127—128 
  6 8 
  8 
  -generic type      57—58 
  -special type,  -special type      58 103 
  -balance      21 127—128 
  -balance, analogue for near components      96 
  -balance, analogue for two primes      134 
  20 
  127 
  123 
  30 81 
  ,  ,  ,  ,  9 11 
  135 
  19 
  139 
  ,  ,  19 
  24 
  6 8 
  7 8 
  7 8 
  ,  ,  7 8 101 
  6 
  7 
  8 10 
  8 
  -neighborhood      117 
  6 8 
 ![$[A_1\times A_2]\bar{K}$](/math_tex/320e06196a3733191e25b80d33d0d00182.gif) (central extension)      101 
 ![$[I_1]$](/math_tex/dc822c8b985ff7f5105878adeb38e1cf82.gif) , ![$[I_2]$](/math_tex/872b7f9ad1d2799d025f8fc9a39dc2f182.gif) , ![$[I_A]$](/math_tex/2632838275519f0a8d49469496d44c3382.gif) , ![$[I_G]$](/math_tex/2ffdceb826c9b45231b2227476b5e87782.gif) , ![$[II_A]$](/math_tex/ceb5cf39fe879838e63599f161b1d9bc82.gif) , ![$[II_G]$](/math_tex/46920f1e361972581d02e30b811f9acd82.gif) , ![$[II_P]$](/math_tex/01eba9c4f971a9212c4669121813e22a82.gif) , ![$[II_S]$](/math_tex/fc22835a715b2fd24ad44db2bd1e970d82.gif) 4—5 
 ![$[X]L_3(4)$](/math_tex/8bc0eb5901d1118552b9d0537123071282.gif) 101 
  ,  ,  139 
  64 124 
  ,  132 
  66 
  82 
  82 
  21 
  6 
  130 
  81 
  ,  -group      60 104 
  116 
  101 
  ,  81 
  102 
  ,  -group      100 
  -groups      54 57 81 99—101 
  -groups as pumpups      101—102 
  ,  -group      100 
  -groups      95 100 
  ,  139 
  ,  124 
  95 
  102 
  -groups      57—58 63 103 
  ,  ,  101 
  139 
  ,  55 103 
  55 81 
  ,  ,  102 
  53 81 
  -group      12 
  -proper      12 
  110 
  , i=0,...,7      86 
  53 81 
  -type      104 
  7 
  139 
  53 81 
  126 
  55 103 
  ,  58. 60 82 
  65 
  ,  97 
  98 
  ,  94 
  102 
  -groups      57 102—103 129 
  -groups as pumpups      101—103 
  ,  88 
  26 
  -type      117 
  18 
  32 
  ,  19 
  -subgroup      25 
  37 82 
  107 
  58 83 
  120 
  118 
  90 
  97 
  ,  ,  32 
  6 
  ,  ,  ,  ,  30 124—125 (B, N)-pair      34
 (B, N)-pair, split      34
 (B, N)-pair, split, recognition of rank 1      36—37 39 49 50 63 113 138
 (B, N)-pair, split, recognition of rank 2      37 63 111 113 115 137—138
 (B,N)-pair, split (B,N)-pair      34
 (y, I)-neighborhood      65
 
 | 2-amalgam  -type      115 2-amalgam type, 2-amalgam type
  114—115 2-central
  -type      111 2-central involution      88
 2-local p-rank      135
 2-maximal
  -type mod cores      111 2-terminal
  -type      110 2-terminal
  -type      114 2-uniqueness subgroup      82
 3/2-balance      64
 3/2-balanced functor      43 64—65
 3/2-balanced type      120
 A-composition factor, length, series      13
 Algebraic automorphism      118 121
 Almost p-constrained p-component preuniqueness subgroup      93
 Almost simple group      18
 Almost strongly p-embedded subgroup      94 (see also “Uniqueness subgroups”)
 Alperin, J.      39 41
 Alternating group
  6 32 36 Alternating group
  as  ,  or  -group      103 Amalgam method      5—6 26 39 41 43 60—61 105 131—133
 Amalgam method, associated graph      132—133
 Amalgam method:
  ,  ,  ,  ,  131—132 Artin, E.      11
 Aschbacher
  -block      39 41 53 Aschbacher, M.      18 30 37 39—43 45—48 50 53 89 99 125 129 130
 Associated
  -balanced functor      125 Associated module of a near component      96
 Atlas of Finite Groups      45 50 139
 Background references      47—50 140
 Background results      59 63 79 87 104 118
 Background Results, Background References      44–50
 Background results, listed      44—50
 Balance, k-balance      see “Group” (also see “Signalizer functor”)
 Bar convention      18 139
 Base of a neighborhood      119
 Baumann, B.      39 131
 Bender method      30 38 43 60 62 104 110 123 134
 Bender, H.      16—17 48—50 123
 Blackburn, N.      46 47
 Bombieri, E.      49
 Borel subgroup      34
 Borel, A.      25
 Brauer — Suzuki theory of exceptional characters      38 135
 Brauer, R.      51
 Brauer, theory of blocks      38 46 50 62
 Brauer, theory of blocks, defect groups of 2-rank at most 3      50
 Bruhat decomposition: B, H, N, R, U, V,
  , W,  ,  33 34 Building      34 73 138
 Burnside, W.      29—30
 C(G,S)      90
 C(K,x)      22
 Cartan subgroup      33
 Carter, R.      45 47
 Centralizer of element of odd prime order p      35 41 42 51 54—56
 Centralizer of element of prime order p      108
 Centralizer of involution      11 27ff. 35 39 41—43 51 52 54 61—62
 Centralizer of involution pattern      46 59 77 109—110
 Centralizer of semisimple element      51 54—56
 Character theory      31 46 50 60 62 104 108 135—137
 Character theory, ordinary vs. modular      50
 Characteristic 2-core      90
 Characteristic p-type      25
 Characteristic power      136
 Characteristic subgroup      16
 Chevalley commutator formula      32—33
 Chevalley group      7
 Chevalley groups      see “Groups of Lie type”
 Chevalley, C.      3
 Chief factor, series      13—14
 Classical group      6
 Classical groups      6ff. (see also “Groups of Lie type”)
 Classification Grid      79 83 85 99—121
 Classification Theorem      see “Theorems”
 Classification Theorem, Theorems
  104—106 Component      17 51 81
 Component, solvable      51 67 109
 Component, standard      53 91—92
 Component, terminal      23 42 53 81 90—92 108
 Composition factor, A-composition factor, length, series      13
 Composition factor, length, series      12
 Computer      35 45 68
 Control of (strong) G-fusion (in T)      87
 Control of 2-locals      129
 Control of fusion      87 122
 Control of rank 1 (or rank 2) fusion      91
 Control of rank 1 or 2 fusion      91—92
 Conway, J.      11
 Core      20 (see also “p'-core”)
 Core, elimination      40 43 60 110—111
 Covering group      16
 Covering group, notation for      101
 Covering group, universal      17 33
 Curtis, C.      35
 Das, K. M.      35 71
 Delgado, A.      37
 Dickson, L.      7
 Dieudonne, J.      47
 Double transitivity of Suzuki type      95—96
 Doubly transitive
  -type      112 Doubly transitive of Suzuki type      95—96
 E(X)      17
 Enguehard, M.      49—50
 Even type      55 81
 Expository references      47 141—146
 Extremal conjugation      122
 F(X)      16
 Failure of factorization module      26
 Feit, W.      46 47 48 107—108
 Finkelstein, L.      35
 Fischer, B.      11 39—40
 Fischer, transpositions      11 39
 Fitting length, series      19
 Fitting subgroup      16
 Fitting subgroup, generalized Fitting subgroup      17 123
 Foote, R.      5 38 53 98
 Four-group      39
 Frattini subgroup      18
 Frobenius group      107
 Frobenius, G.      29
 Frohardt, D.      35
 Fusion      29 60 62 63 104 120 122
 Fusion, extremal conjugation      122
 G(q),
  32—33 General local group theory      45—48
 Generalized Fitting subgroup      17 123
 Generic even type      106
 Generic odd type      106
 Generic, generic type      58 106
 Geometry associated with a finite group      35 73—74
 Gilman, R.      35 39 41
 Glauberman, G.      21 38 39 48—50 124 130
 Goldschmidt, D.      39 43 49 125
 Gomi, K.      37
 Gorenstein, D.      29 38 39 41 46 47—50 99 124 126 127
 Griess, R. L.      17 35 41 45
 Group of Lie type      see “Groups of Lie type”
 Group order formulas      50 135—137
 Group,
  -proper      12 21 Group, almost simple      18
 Group, alternating      see “Alternating group”
 Group, covering      16
 Group, covering, notation for      101
 Group, covering, universal      17 33
 Group, k-balanced      124—125 129
 Group, k-balanced,
  -balanced      125 129 Group, k-balanced, locally balanced      128
 Group, k-balanced, locally k-balanced,
  -balanced      126 Group, k-balanced, weakly k-balanced, weakly locally k-balanced      124 126
 Group, nilpotent      15—16
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |