|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Gorenstein D., Lyons R., Solomon R. — The Classification of the Finite Simple Groups |
|
|
Предметный указатель |
-balance 125
101
, 60 100
101
101
101
(central extension) 101
6 8
, , , 7 8
, 7 8 10
-property 24 28 40—41 62 123 127
-property, partial 30 36 42 64
24
7 8
63
22
14
139
, , 9 11
, , , , 7 8 10
, , , 7 8 10
14
17
, , , 9 11
, , 7 8 10
, , 9 11
6
7
109—121
, of Lie type of large Lie rank 116 121
, of Lie type of small Lie rank, of characteristic 2 95—96 115
, of Lie type of small Lie rank, of characteristic 2 and Lie rank 1 95—96
, of Lie type of small Lie rank, of odd characteristic 110 112 113
, sporadic 109
, , 121
, , 109 114
27
66 121
, 7 8 10
, 71
, , , 9 11
-type 104
-type 105
-uniqueness subgroup 94
-type 104
-balance 127
-balance 127—128
6 8
8
-generic type 57—58
-special type, -special type 58 103
-balance 21 127—128
-balance, analogue for near components 96
-balance, analogue for two primes 134
20
127
123
30 81
, , , , 9 11
135
19
139
, , 19
24
6 8
7 8
7 8
, , 7 8 101
6
7
8 10
8
-neighborhood 117
6 8
(central extension) 101
, , , , , , , 4—5
101
, , 139
64 124
, 132
66
82
82
21
6
130
81
, -group 60 104
116
101
, 81
102
, -group 100
-groups 54 57 81 99—101
-groups as pumpups 101—102
, -group 100
-groups 95 100
, 139
, 124
95
102
-groups 57—58 63 103
, , 101
139
, 55 103
55 81
, , 102
53 81
-group 12
-proper 12
110
, i=0,...,7 86
53 81
-type 104
7
139
53 81
126
55 103
, 58. 60 82
65
, 97
98
, 94
102
-groups 57 102—103 129
-groups as pumpups 101—103
, 88
26
-type 117
18
32
, 19
-subgroup 25
37 82
107
58 83
120
118
90
97
, , 32
6
, , , , 30 124—125
(B, N)-pair 34
(B, N)-pair, split 34
(B, N)-pair, split, recognition of rank 1 36—37 39 49 50 63 113 138
(B, N)-pair, split, recognition of rank 2 37 63 111 113 115 137—138
(B,N)-pair, split (B,N)-pair 34
(y, I)-neighborhood 65
| 2-amalgam -type 115
2-amalgam type, 2-amalgam type 114—115
2-central -type 111
2-central involution 88
2-local p-rank 135
2-maximal -type mod cores 111
2-terminal -type 110
2-terminal -type 114
2-uniqueness subgroup 82
3/2-balance 64
3/2-balanced functor 43 64—65
3/2-balanced type 120
A-composition factor, length, series 13
Algebraic automorphism 118 121
Almost p-constrained p-component preuniqueness subgroup 93
Almost simple group 18
Almost strongly p-embedded subgroup 94 (see also “Uniqueness subgroups”)
Alperin, J. 39 41
Alternating group 6 32 36
Alternating group as , or -group 103
Amalgam method 5—6 26 39 41 43 60—61 105 131—133
Amalgam method, associated graph 132—133
Amalgam method: , , , , 131—132
Artin, E. 11
Aschbacher -block 39 41 53
Aschbacher, M. 18 30 37 39—43 45—48 50 53 89 99 125 129 130
Associated -balanced functor 125
Associated module of a near component 96
Atlas of Finite Groups 45 50 139
Background references 47—50 140
Background results 59 63 79 87 104 118
Background Results, Background References 44–50
Background results, listed 44—50
Balance, k-balance see “Group” (also see “Signalizer functor”)
Bar convention 18 139
Base of a neighborhood 119
Baumann, B. 39 131
Bender method 30 38 43 60 62 104 110 123 134
Bender, H. 16—17 48—50 123
Blackburn, N. 46 47
Bombieri, E. 49
Borel subgroup 34
Borel, A. 25
Brauer — Suzuki theory of exceptional characters 38 135
Brauer, R. 51
Brauer, theory of blocks 38 46 50 62
Brauer, theory of blocks, defect groups of 2-rank at most 3 50
Bruhat decomposition: B, H, N, R, U, V, , W, , 33 34
Building 34 73 138
Burnside, W. 29—30
C(G,S) 90
C(K,x) 22
Cartan subgroup 33
Carter, R. 45 47
Centralizer of element of odd prime order p 35 41 42 51 54—56
Centralizer of element of prime order p 108
Centralizer of involution 11 27ff. 35 39 41—43 51 52 54 61—62
Centralizer of involution pattern 46 59 77 109—110
Centralizer of semisimple element 51 54—56
Character theory 31 46 50 60 62 104 108 135—137
Character theory, ordinary vs. modular 50
Characteristic 2-core 90
Characteristic p-type 25
Characteristic power 136
Characteristic subgroup 16
Chevalley commutator formula 32—33
Chevalley group 7
Chevalley groups see “Groups of Lie type”
Chevalley, C. 3
Chief factor, series 13—14
Classical group 6
Classical groups 6ff. (see also “Groups of Lie type”)
Classification Grid 79 83 85 99—121
Classification Theorem see “Theorems”
Classification Theorem, Theorems 104—106
Component 17 51 81
Component, solvable 51 67 109
Component, standard 53 91—92
Component, terminal 23 42 53 81 90—92 108
Composition factor, A-composition factor, length, series 13
Composition factor, length, series 12
Computer 35 45 68
Control of (strong) G-fusion (in T) 87
Control of 2-locals 129
Control of fusion 87 122
Control of rank 1 (or rank 2) fusion 91
Control of rank 1 or 2 fusion 91—92
Conway, J. 11
Core 20 (see also “p'-core”)
Core, elimination 40 43 60 110—111
Covering group 16
Covering group, notation for 101
Covering group, universal 17 33
Curtis, C. 35
Das, K. M. 35 71
Delgado, A. 37
Dickson, L. 7
Dieudonne, J. 47
Double transitivity of Suzuki type 95—96
Doubly transitive -type 112
Doubly transitive of Suzuki type 95—96
E(X) 17
Enguehard, M. 49—50
Even type 55 81
Expository references 47 141—146
Extremal conjugation 122
F(X) 16
Failure of factorization module 26
Feit, W. 46 47 48 107—108
Finkelstein, L. 35
Fischer, B. 11 39—40
Fischer, transpositions 11 39
Fitting length, series 19
Fitting subgroup 16
Fitting subgroup, generalized Fitting subgroup 17 123
Foote, R. 5 38 53 98
Four-group 39
Frattini subgroup 18
Frobenius group 107
Frobenius, G. 29
Frohardt, D. 35
Fusion 29 60 62 63 104 120 122
Fusion, extremal conjugation 122
G(q), 32—33
General local group theory 45—48
Generalized Fitting subgroup 17 123
Generic even type 106
Generic odd type 106
Generic, generic type 58 106
Geometry associated with a finite group 35 73—74
Gilman, R. 35 39 41
Glauberman, G. 21 38 39 48—50 124 130
Goldschmidt, D. 39 43 49 125
Gomi, K. 37
Gorenstein, D. 29 38 39 41 46 47—50 99 124 126 127
Griess, R. L. 17 35 41 45
Group of Lie type see “Groups of Lie type”
Group order formulas 50 135—137
Group, -proper 12 21
Group, almost simple 18
Group, alternating see “Alternating group”
Group, covering 16
Group, covering, notation for 101
Group, covering, universal 17 33
Group, k-balanced 124—125 129
Group, k-balanced, -balanced 125 129
Group, k-balanced, locally balanced 128
Group, k-balanced, locally k-balanced, -balanced 126
Group, k-balanced, weakly k-balanced, weakly locally k-balanced 124 126
Group, nilpotent 15—16
|
|
|
Реклама |
|
|
|