Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Klaas G., Leedham-Green C.R., Plesken W. — Linear Pro-p-Groups of Finite Width
Klaas  G., Leedham-Green C.R., Plesken W. — Linear Pro-p-Groups  of Finite Width



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear Pro-p-Groups of Finite Width

Авторы: Klaas G., Leedham-Green C.R., Plesken W.

Аннотация:

The normal subgroup structure of maximal pro-"p"-subgroups of rational points of algebraic groups over the "p"-adics and their characteristic "p" analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become periodic. The richness of the lattice of normal subgroups is studied by the notion of obliquity. All just infinite maximal groups with Lie algebras up to dimension 14 and most Chevalley groups and classical groups in characteristic 0 and "p" are covered. The methods use computers in small cases and are purely theoretical for the infinite series using root systems or orders with involutions.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 115

Добавлена в каталог: 04.12.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Subsequence (of a sequence)      III.6.1 R.8.7
Subset of a set      II.2.1 R.1.7
Subset, cofinal      III.1.7 R.6.5
Subset, coinitial      III.1.7 R.6.5
Subset, consisting of a alone      R.1.9
Subset, empty      R.1.8
Subset, saturated (with respect to an equivalence relation)      II.6.4
Subset, symmetric      R.3.4
Subsets, disjoint      R.1.13
Subsets, set of      II.5.1 R.1.10
Subsets, stable      R.2.5
Substantific sign      I.1.3
Substitution, criterion of      I.1.2
Sum of a family of sets      II.4.8
Sum of cardinals      III.3.3
Sum of powers      R.7.5
Sum of sets      R.4.5
Sum, cardinal      III.3.3
Sum, ordinal      III.2.Ex.13
sup X, inf X      III.1.9
sup(x,y), inf(x,y)      III.1.9
Supremum      III.1.9 R.6.7
Surjection      II.3.7 R.2.4
Surjective mapping      II.3.7 R.2.4
Symbol, functional      I.5.3
Symbol, numerical      III.5.7
Symmetric graph      II.2.3
Symmetric relation or subset      II.6.1 R.3.4
Symmetry, canonical      R.3.4
System of numeration      III.5.7
System of representatives      II.6.2
System, decimal      III.5.7
System, direct      III.7.5 R.6.13
System, dyadic      III.5.7
System, inverse      III.7.1 R.6.14
T/R (T, R equivalence relations)      R.5.9
Target of a correspondence      II.3.1
Term      I.1.3
Term, (first, kth, last) of a finite sequence      III.5.4
Term, general      R.7.8
Term, intrinsic      IV.1.6
Term, nth      R.7.8
Term, satisfying a relation      I.2.2
Term, which can be put in the form T      I.5.2
Text, demonstrative      I.2.2
Theorem      I.2.2
Theorem of Cantor      III.3.6
Theorem of legitimation      I.3.3
Theorem of Zermelo      III.2.3 R.6.5
Theories, equivalent      I.2.4
Theory      I.1.1 I.2.1 I.2.2
Theory multivalent      R.3.7
Theory of a species of structures      IV.1.4
Theory of sets      II.1.1
Theory of structures of a given species      R.8.2
Theory quantified      I.4.2
Theory stronger      I.2.4
Theory univalent      R.8.7
Theory, contradictory      I.2.2
Theory, equalitarian      I.5.1
Theory, logical      I.3.1
Total order relation, total ordering      III.1.12
Totally ordered set      III.1.12 R.6.4
Trace of a family of sets      II.4.5
Trace of a subset, or set of subsets      R.1.16
Transform of an element by a function      II.3.4 R.2.4
Transitive relation      II.6.1 R.5.1
Transitive set      III.2.Ex.20
Transitivity criteria      IV.2.3 IV.2.5
Transport of structure      R.8.5
Transportable relation      IV.1.3
Transporting a structure      IV.1.5
Transversal      II.6.2
Triple      II.2.2
Triple sequence      III.6.1
True relation      I.2.2
Typical characterization of a species of structures      IV.1.4
Typical quantifier      I.4.4
Typification      IV.1.3
Unbounded interval      III.1.13 R.6.4
Underlying structure      IV.1.6
Union of a family of sets      R.4.2
Union of a set of sets      II.4.1
Union of several sets      R.1.13
Union, countable      R.7.9
Univalent species of structures      IV.1.5
Univalent theory      R.8.7
Universal mapping      IV.3.1
Universal problem      IV.3.1
Universal quantifier      I.4.1
Universal set      IV.3.1
Upper bound      III.1.8 R.6.7
Upper bound, least      III.1.9 R.6.7
Upper bound, strict      III.2.4
Value, of a function      II.3.4
Value, of a function at an element      R.2.1
Value, of a variable      R.1.2
Value, taken by a correspondence      II.3.1
Variable      R.1.2
Variance of an assembly      IV.2.Ex.1
Weak compatibility (of an equivalence relation with a preorder relation)      III.1.Ex.2
Weight of a sign      I.1.3 I.App.1
Well-ordered set      III.2.1 R.6.5
Well-ordering, well-ordering relation      III.2.1
Without gaps (ordered set)      III.1.Ex.19
Word      I.App.1
Word, balanced      I.App.3
Word, empty      I.App.1
Word, significant      I.App.2
x<y, y<x      III.1.3
Zermelo's axiom (=axiom of choice)      R.4.9
Zermelo's theorem      III.2.3 R.6.5
Zorn's lemma      III.2.4 R.6.10
[a, b], [a,b[, ]a, b], ]a, b[, $]\leftarrow, a]$, $]\leftarrow, a[$, $[a, \rightarrow[$, $]a, \rightarrow[$, $]\leftarrow,\rightarrow[$      R.6.4
[a,b], [a,b[, ]a,b], ]a,b[      III.1.13
{a}      R.1.9
{x,y,z}      II.4.5 R.1.13
{x,y}, {x}      II.1.5
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте