Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Klaas G., Leedham-Green C.R., Plesken W. — Linear Pro-p-Groups of Finite Width
Klaas  G., Leedham-Green C.R., Plesken W. — Linear Pro-p-Groups  of Finite Width



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear Pro-p-Groups of Finite Width

Авторы: Klaas G., Leedham-Green C.R., Plesken W.

Аннотация:

The normal subgroup structure of maximal pro-"p"-subgroups of rational points of algebraic groups over the "p"-adics and their characteristic "p" analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become periodic. The richness of the lattice of normal subgroups is studied by the notion of obliquity. All just infinite maximal groups with Lie algebras up to dimension 14 and most Chevalley groups and classical groups in characteristic 0 and "p" are covered. The methods use computers in small cases and are purely theoretical for the infinite series using root systems or orders with involutions.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 115

Добавлена в каталог: 04.12.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Multiple sequence      III.6.1
Multivalent theory      R.8.7
Mutually disjoint (family of sets)      II.4.7
N      R.6.2
n! (n an integer)      III.5.8
N, $\aleph_{0}$      III.6.1
Natural integer      III.4.1
Negation of a relation      I.1.3
Noetherian induction, principle of      III.6.5
Noetherian set      III.6.5
not (A), (A) or (B), $(A)\Longrightarrow(B)$      I.2
nth iterate of a mapping      III.6.2 R.2.11
nth term of a sequence      III.6.1 R.7.8
Number of elements of a finite set      III.4.1
Numeration, system of      III.5.7
Numerical symbol      III.5.7
Odd integer      III.5.6
One-to-one correspondence, mapping      II.3.7 R.2.9
Open interval      III.1.13 R.6.4
Opposite order relation, preorder relation      III.1.1 III.1.2 R.6.1
Order relation between x and y, with respect to x and y      III.1.1
Order relation on a set      III.1.1 R.6.1
Order relation, associated with a preorder relation      III.1.2
Order relation, induced on a set      III.1.4
Order relation, lexicographical      III.2.6
Order relation, opposite to an order relation      III.1.1
Order type      III.2.Ex.13
Order-preserving mapping      III.1.5
Order-reversing mapping      III.1.5
Order-structure      R.6.1
Order-structure, total      III.1.12
Ordered pair      II.2.1
Ordered set      III.1.3 R.6.1
Ordered set, antidirected      III.1.Ex.23
Ordered set, branched      III.1.Ex.24
Ordered set, completely ramified      III.2.Ex.8
Ordered set, partially well-ordered      III.2.Ex.4
Ordered set, ramified      III.2.Ex.8
Ordered set, scattered      III.1.Ex.20
Ordered set, without gaps      III.1.Ex.19
Ordering      III.1.1 R.6.1
Ordering, induced      III.1.4
Ordering, lexicographical      III.2.6
Ordering, product      III.1.4
Ordering, total      III.1.12
Ordinal      IlI.2.Ex.14
Ordinal product (of order-types)      III.2.Ex.13
Ordinal product (of order-types), regular      III.6.Ex.16
Ordinal product (of order-types), singular      III.6.Ex.16
Ordinal sum (of order-types)      III.2.Ex.13
Ordinal sum, of a family of non-empty ordered sets indexed by a ordered set      III.1.Ex.3
Ordinal, critical      III.6.Ex.13
Ordinal, functional symbol      III.2.Ex. 17
Ordinal, inaccessible initial      III.6.Ex.16
Ordinal, indecomposable      III.2.Ex.16
Ordinal, initial      III.6.Ex.10
Pair, ordered      II.2.1
Pairwise disjoint (family of subsets)      R.4.4
Parameter, parametric set, parametric representation      II.3.7 R.2.14
Partial mapping      II.3.9 R.3.13
Partial product      II.5.4
Partially well-ordered (ordered set)      III.2.Ex.1
Partition of a set      II.4.7 R.4.4
Passage to quotient sets      II.6.3 II.6.5 R.5.7 R.5.8
Perfectly balanced assembly      I.App.4
Permutation      II.3.7 R.2.9
Poorer (species of structures)      IV.1.6
Power, of a set      III.3.1 R.7.2
Power, of the continuum      III.6.4
Powers, equivalent      R.7.2
Powers, sum of      R.7.5
Predecessor (of an ordinal)      III.2.Ex.14
Preorder relation      III.1.2 R.6.1
Preorder relation on a set      III.1.2
Preorder relation, opposite to a preorder relation      III.1.2
Preordered set      R.6.1
Preordering      III.1.2
Preordering (coarser, finer)      III.1.4
Principal base sets      IV.1.3 IV.1.4
Principle of Induction      III.4.3
Principle of Noetherian induction      III.6.5
Principle of transfinite induction      III.2.2
Procedure of deduction of structures      IV.1.6
Product cardinal      III.3.3
Product of a family of mappings      II.5.7
Product of a family of sets      II.5.3 R.4.9
Product of cardinals      III.3.3
Product of order relations, orderings, preorder relations, preorderings      III.1.4
Product of ordered sets, preordered sets      III.1.4
Product of several sets      R.3.12
Product of two coverings      II.4.6
Product of two equivalence relations      II.6.8 R.5.10
Product of two sets      II.2.2 R.3.1
Product ordinal      III.2.Ex.13
Product partial      II.5.4
Product structure, product of structures      IV.2.4
Product, lexicographic      III.2.6
Projection onto a factor      II.5.3
Projection onto a partial product      II.5.4
Projection, (first, second) of a graph      II.3.1
Projection, (first, second) of an ordered pair      II.2.1
Projections      R.3.1 R.3.12 R.4.11
proof      I.2.2
Proper segment      I.App.1
Property of finite character      III.4.5
Proposition      I.2.2
Pseudo-ordinal      III.2.Ex.20
Quantified theory      I.4.2
Quantifier, existential      I.4.1
Quantifier, typical      I.4.4
Quantifier, universal      I.4.1
Quotient equivalence relation      II.6.7 R.5.9
Quotient of a preorder relation or preordered set by an equivalen relation      III.1.Ex.2
Quotient of two integers      III.5.6
Quotient set      II.6.2 R.5.2
Quotient structure      IV.2.6
R/S (R, S equivalence relations)      II.6.7
Ramified (ordered set)      III.2.Ex.8
Range, of a correspondence      II.3.1
Range, of a graph      II.3.1
Realization, of a signed echelon type      IV.2.Ex.1
Realization, of an echelon type      IV.1.Ex.1
Reductio ad absurdum, method of      I.3.3
Refinement of a covering      II.4.6
Reflexive relation on a set      II.6.1 R.5.1
Regular cardinal      III.6.Ex.17
Regular ordinal      IV.6.Ex.16
Relation      I.1.3
Relation between an element of A and an element of B      II.3.1
Relation of equality      I.5.1 R.1.6
Relation of inclusion      II.1.2 III.1.1 R.1.12
Relation of membership      II.1.1 R.1.10
Relation order      III.1.1 R.6.1
Relation, $\leqslant$ (resp. $\geqslant,\subset,\supset$)      III.1.3
Relation, collectivizing      II.1.4
Relation, compatible with an equivalence relation      II.6.3 R.5.7
Relation, compatible with two equivalence relations      II.6.8
Relation, equivalence      II.6.1 R.5.2
Relation, false      I.2.2
Relation, functional      I.5.3 R.2.1
Relation, having a graph      II.3.1
Relation, induced by an equivalence relation on passing to the quotient      II.6.3
Relation, preorder      III.1.2 R.6.1
Relation, reflexive      II.6.1 R.5.1
Relation, single-valued      I.5.3
Relation, symmetric      II.6.1 R.3.4
Relation, total order      II.1.12
Relation, transitive      II.6.1 R.5.1
Relation, transportable      IV.1.3
Relation, true      I.2.2
Relation, well-ordering      III.2.1
Relational sign      I.1.3
Relations, equivalent      I.3.5 R.1.3
Relative complement (of an element in a lattice)      III.1.Ex.17
Relatively complemented lattice      III.1.Ex.17
Remainder (on division of a by b)      III.5.6
Representation, parametric      II.3.7 R.2.14
Representative, of an equivalence class      II.6.2
Representatives, system of      II.6.2
Restricted Induction      III.4.3
Restriction, of a direct system      III.7.6
Restriction, of a function      II.3.5 R.2.13
Restriction, of an inverse system      III.7.1
Retraction of an injection      II.3.8
Richer structure      R.8.3
Right directed set      III.1.10 R.6.8
Right inverse (of a surjection)      II.3.8
Right-hand endpoint of an interval      III.1.13
R{x,y,z}      R.1.2
Saturated set      R.5.6
Saturation of a set with respect to an equivalence relation      R.5.6
Scale of sets      R.8.1
Scattered (ordered set)      III.1.Ex.20
Scheme      I.2.1
Scheme of selection and union      II.1.6
Scheme, echelon construction      IV.1.1
Second coordinate of an ordered pair      II.2.1
Second projection      II.3.1
Second species      I.1.3
Section, of a correspondence      II.3.1
Section, of a graph      II.3.1
Section, of a set (with respect to an equivalence relation)      II.6.2
Section, of a subset of a product      R.3.7
Section, of a surjection      II.3.8
Segment of a word      I.App.1
Segment of an assembly      I.App.4
Segment with endpoint x      III.2.1
Segment, final      I.App.1
Segment, initial      I.App.1
Segment, proper      I.App.1
Segments, disjoint      I.App.1
Selection and union, scheme of      II.1.6
Separation (of the elements of E by $\alpha$-mappings)      IV.3.3
SEQUENCE      R.7.8
Sequence of elements of a set      III.6.1
Sequence, double      R.7.8
Sequence, finite      III.5.4 R.7.8
Sequence, infinite      III.6.1 R.7.8
Sequence, obtained by ranging a countable family in an order defined by a maping      III.6.1
Sequence, significant      I.App.2
Sequence, stationary      III.6.5
Sequence, triple, multiple      III.6.1
Sequences differing only in the order of their terms      III.6.1 R.7.8
Set      II.1.1
Set of a-morphisms      IV.2.1
Set of all $x\in A$ such that P      II.1.6
Set of all x such that R (R a relation collectivizing in x)      II.1.4
Set of cardinals $\leqslant a$      III.3.2
Set of classes of equivalent objects      II.5.9
Set of elements of a family      II.3.4 R.2.14
Set of mappings of E into F      II.5.2 R.2.2
Set of n elements (n an integer)      III.4.1
Set of objects of the form T for $x\in A$      II.1.6
Set of parameters of parametric representation      II.3
Set of subsets of a set      II.5.1 R.1.10
Set of subsets, of finite character      III.4.5
Set, base      IV.1.3 IV.1.4
Set, bounded, bounded above, bounded below      III.1.8 R.6.7
Set, consisting of a single element      II.1.5
Set, countable      III.6.4 R.7.7
Set, decent      III.2.Ex.20
Set, directed      III.1.10 R.6.8
Set, empty      II.1.7 R.1.8
Set, endowed with a structure      IV.1.4
Set, equipotent to another set      R.7.1
Set, finite      III.4.1
Set, index (of a family)      II.3.4
Set, inductive      III.2.4 R.6.9
Set, infinite      III.6.1
Set, left directed      III.1.10 R.6.8
Set, Noetherlan      III.6.5
Set, ordered      III.1.3 R.6.1
Set, preordered      III.1.3 R.6.1
Set, product      R.3.1 R.3.12.
Set, quotient      II.6.2 R.5.2
Set, representative (of a relation)      II.3.1
Set, right directed      III.1.10 R.6.8
Set, totally ordered      III.1.12 R.6.4
Set, transitive      III.2..Ex.20
Set, universal      IV.3.1
Set, well-ordered      III.2.1 R.6.5
Set, whose only element is x      II.1.5
Sets, composition of      R.3.10
Sets, disjoint      II.4.7
Sets, equipotent      III.3.1
Sets, isomorphic      IV.1.5
Sets, theory of      II.1.1
SIGN      I.1.1 I.App.1
Sign, logical      I.1.1
Sign, rational      I.1.3
Sign, specific      I.1.1
Sign, substantific      I.1.3
Signed canonical extension      IV.2.Ex.1
Signed echelon type      IV.2.Ex.1
Significant sequence, word      I.App.2
Single-valued relation      I.5.3
Singular cardinal      III.6.Ex.17
Singular ordinal      III.6.Ex.l6
Smaller than      IV.1.3
Solution (of an equation)      I.2.2
Solution of a universal mapping problem      IV.3.1
Solution, complete (or general)      I.5.2
Source of a correspondence      II.3.1
Species of algebraic structures      IV.1.4
Species of order structures      IV.1.4
Species of structures      IV.1.4 R.8.2
Species of topological structures      IV.1.4
Species, equivalent      IV.1.7
Species, poorer (richer)      IV.1.6
Specific sign      I.1.1
Stable subset      R.2.5
Stationary sequence      III.6.5
Strict upper bound      III.2.4
Strictly coarser (finer) structure      IV.2.2
Strictly decreasing (increasing)      III.1.5 R.6.12
Strictly greater (less)      III.1.3 R.6.3 R.7.3
Stronger theory      I.2.4
Strongly inaccessible cardinal      III.6.Ex.22
Structure of a set      IV.1.4 R.8.2
Structure of species $\Sigma$      IV.1.4
Structure, coarser      IV.2.2
Structure, deduced      IV.1.6
Structure, final      IV.2.5
Structure, finer      IV.2.2
Structure, generic      IV.1.4
Structure, induced      IV.2.4
Structure, initial      IV.2.3
Structure, order      R.6.1
Structure, product      IV.2.4
Structure, quotient      IV.2.6
Structure, richer      R.8.2
Structure, strictly coarser (finer)      IV.2.2
Structure, subordinate      IV.1.6
Structure, transport of      R.8.5
Structure, underlying      IV.1.6
Structures, comparable      IV.2.2
Structures, isomorphic      IV.1.5 R.8.6
Subfamily      II.3.5 R.2.14
Sublattice      III.4.Ex.9
Subordinate structure      IV.1.6
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте