Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Girard J.-Y., Taylor P., Lafont Y. — Proofs and Types
Girard J.-Y., Taylor P., Lafont Y. — Proofs and Types



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Proofs and Types

Авторы: Girard J.-Y., Taylor P., Lafont Y.

Аннотация:

Translated (from French) and developed from notes prepared for a course at the University of Paris VII. Deals with the mathematical background of the application to computer science of aspects of logic (namely the correspondence between propositions and types). Treats both the traditional logic material, and its prospective application to computer science.


Язык: en

Рубрика: Математика/Алгебра/Математическая логика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1989

Количество страниц: 176

Добавлена в каталог: 11.12.2004

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
For some $(\exists)$      see “Existential quantifier”
Frege      1 2
Function      1 17
Function, Berry order $(\leq_B)$      65
Function, composition      69
Function, continuous      55 58
Function, fixed point      72
Function, graph      1 66
Function, linear      99 148
Function, not representable      122
Function, on proofs      6 11
Function, on types      83 132 136
Function, partial      60 66
Function, partial recursive      55
Function, pointwise order      66
Function, polynomial resolution      147
Function, provably total      52 123
Function, recursion      50 90 120
Function, representable      52 121
Function, sequential      54
Function, stable      58 62 68
Function, total recursive      122
Function, trace (Tr)      62
Function, two arguments      61
Function-space and implication      12 15 20
Function-space in F      82
Function-space, $\lambda$-calculus      12 15
Function-space, linear decomposition      101
Function-space, semantics      54 62 64 67 136
functor      59 134 136 141
Gallier      28
Galois theory      134
Gandy      27
Garbage collection      150
GEM      136
General recursion      72
Gentzen      3 28 105
Geometry of interaction      4 160
Girard      30 42 80 82 114 124 150
Goals in PROLOG      112
Godel      1 6 47 54
Godel, $\neg\neg$-translation      124
Godel, incompleteness theorem      42 114
Godel, numbering      53
Good elimination      77
Graph, embedding      133 134
Graph, function      1 66
Graph, product      104 138
Graph, web      56
Grothendieck fibration      135 137 141
Hauptsatz (cut elimination)      3 105 151 158
Head normal form      19 52 76 121
Height of a proof (h)      109
Herbrand      4
Hereditarily effective operations      55
Heyting      5 15 80 120
Heyting, arithmetic $(HA_2)$      124
Horn clause      see “Intuitionistic sequent”
Howard      see “Curry — Howard isomorphism”
Hyland      133
Hyperexponential function      111
Hypotheses      9
Hypotheses, discharge      9 161
Hypotheses, parcels of      11 36 40 161
Hypotheses, subformula property      76
Hypotheses, variables      11
i      see “Introduction”
Idempotence of logic      29
Identification of terms and proofs      see “Conversion”
Identity, axiom      30 112 156
Identity, hypothesis      10
Identity, maximal in Berry order      65 135
Identity, polymorphic      83 132 136 138
Identity, proof of $A\Rightarrow A$      6
if      see “Casewise definition”
Implication      5
Implication and function-space      12 15 20
Implication, conversion      13
Implication, cut elimination      107
Implication, linear $(\multimap)$      100 153
Implication, natural deduction, $\Rightarrow I$ and $\Rightarrow \mathcal{E}$      10
Implication, realisability      127
Implication, semantics      54
Implication, sequent calculus, $\mathcal{L}\Rightarrow$ and $\mathcal{R}\Rightarrow$      32
IN = {0,1,2,...}      see “Set of integers”
Inclusion order      56
Incoherence $(^\smile_\frown)$      100
Incompleteness theorem      6 42 114 124
Inductive data types      87 121
Inductive definition of +, $\times$, etc.      50
Infinite static denotation      2
Infinity ($\tilde{\infty}$ and $\infty$)      71
Initial object      95 152
Input      1 17
Integers      1
Integers in $HA_2$      125
Integers in F      89 121 147
Integers in T (Int, O, S, R)      48 70
Integers, coherence space, $[\Pi X.X\rightsquigarrow(X\rightsquigarrow X)\rightsquigarrow X]$      147
Integers, coherence space, flat (Int)      56 60 66 70
Integers, coherence space, lazy $(Int^+)$      71 98
Integers, conversion      48
Integers, dI-domain $(Int^<)$      98
Integers, iteration (It)      51 70 90
Integers, linear type (LInt)      148
Integers, normal form      52 121
Integers, realisability (Nat)      126 127
Integers, recursor (R)      48 91
Integers, totality      149
Internalisation      27
Intersection      see “Conjunction”
Intersection in [Bool]      140
Intersection, bounded above      see “Pullback”
Introduction      8 48
Introduction, $\forall^2 I$      94 125
Introduction, $\vee 1I$, $\vee 2I$ and $\exists I$      73
Introduction, $\wedge I$, $\Rightarrow I$ and $\forall I$      10
Introduction, linear logic      161
Introduction, O, S, T and F in T      48
Introduction, pairing and $\lambda$-abstraction      11 12 19
Introduction, right logical rules      37 40
Introduction, sums      81
Intuitionism      6 150
Intuitionistic sequent      8 30 32 33 112 152
Inversion in linear algebra      101
Isomorphisms      132—134
Iteration (It)      51 70 90
Join      see “Disjunction”
Join, preservation (linearity)      99
Joint continuity and stability      61
Jung      133 140
Kleene      123
Konig’s lemma      27
Koymans      133
Kreisel      55
l(t), length of normal form      49
L-domains      140
Lafont      150
Last rule of a proof      8 33
Lazy evaluation      150
Lazy natural numbers      71 98
Least approximant      59 137
Left logical rules      see “Sequent calculus”
Lifted sum      96
Limit-colimit coincidence      137
Linear algebra      101
Linear logic      30 35 74 161
Linear logic, Church — Rosser property      159
Linear logic, cut rule      153 156 158
Linear logic, direct product (\&)      61 104 152
Linear logic, direct sum $(\oplus)$      96 103 146 152
Linear logic, implication $(\multimap)$      100 104 153
Linear logic, integers (LInt)      148
Linear logic, intuitionistic logic      154
Linear logic, linear maps      99 101
Linear logic, link rule      156
Linear logic, natural deduction      161
Linear logic, negation $(^\bot)$      100 138 153
Linear logic, notation for tokens      138
Linear logic, of course (!)      101 145 154
Linear logic, polynomial resolution      147
Linear logic, proof nets      155
Linear logic, reducibility      115
Linear logic, semantics      95
Linear logic, sequent calculus      152
Linear logic, sum decomposition      95 103 146
Linear logic, syntax      150
Linear logic, tensor product $(\otimes)$      104 146 152 156
Linear logic, tensor sum or par $(\maltese)$      104 152 156
Linear logic, trace (Trlin)      100
Linear logic, units (1,$\bot$, $\top$ and 0)      104 154
Linear logic, why not (?)      102 154
Link axiom      156
LISTS      47 91
Locally compact space      55
Logical rules      31
Logical rules, cut elimination      105 112
Logical rules, linear logic      153 156
Logical rules, natural deduction      37
Logical view of topology      55
Long trip condition      158
Lowenheim      1 3
Martin — Lof      88
Match (patterns)      81
Maximally consistent extensions      54
Meet      see “Conjunction”
Meet, bounded above      see “Pullback”
Memory allocation      150
Mod, coherence relation      56
Modalities      101 154
Model theory      3
Modules      17 47
Modus ponens $(\Rightarrow\mathcal{E})$      see “Elimination”
Moggi      141
Nat predicate in $HA_2$      126
Natural deduction      8
Natural deduction, $\lambda$-calculus      11 19
Natural deduction, $\vee$, $\bot$ and $\exists$      73
Natural deduction, $\wedge$, $\Rightarrow$ and $\forall$      10
Natural deduction, conversion      13 20 75 78
Natural deduction, linear logic      161
Natural deduction, normalisation      24 42
Natural deduction, second order      94 125
Natural deduction, sequent calculus      35
Natural deduction, subformula property      76
Natural numbers      see “Integers”
Negation      5
Negation, $A \vee\neg A$      6
Negation, $\neg A \stackrel{\mathrm{def}}{=} A\Rightarrow\bot$      6 73
Negation, cut elimination      107
Negation, linear $(^\bot)$      100 138 153
Negation, neg in Bool      50
Negation, sequent calculus $(\mathcal{L}\neg,\mathcal{R}\neg)$      31
Neutrality      43 49 116
Nil (empty tree or list)      91
NJ (Prawitz’ system)      see “Natural deduction”
Noetherian      66
Nonconvergent rewriting      72
Nondeterminism      150
Normal closure of a field      134
Normal form      18 76
Normal form, cut-free      41
Normal form, existence      24
Normal form, head normal form      19
Normal form, integers      52 121
Normal form, linear logic      159
Normal form, uniqueness      22
Normalisation theorem for F      114
Normalisation theorem for T      49
Normalisation theorem, length of process $(\nu)$      27 43 49
Normalisation theorem, linear logic      155
Normalisation theorem, strong      42
Normalisation theorem, weak      22 24
Not $(\neg)$      see “Negation”
Object language      10
Ockham’s razor      3
of course (!)      101 138 145 154
Operational semantics      14 121
OR      see “Disjunction and parallel or”
Orthogonal $(\bot)$      see “Linear negation”
Output      17
PA, $PA_2$      see “Peano arithmetic”
Pairing in F      84
Pairing, conjunction      11
Pairing, introduction      19
Pairing, semantics (Pair)      61 68
Par $(\maltese)$      see “Tensor sum”
Parallel or      50 60 70 81
Parallel process      150 159
Parcels of hypotheses      11 36 40 161
Partial equivalence relation      55
Partial function      60
Partial function, coherence space $(\mathcal{PF})$      66
Partial function, recursive      55
Partial objects      57
Pascal      47
Pattern matching      81
Peano arithmetic (PA)      42 53
Peano arithmetic (PA), second order $(PA_2)$      114 123
Peculiar      134
permutations      134
Pitts      133
Plotkin      56
Plugging      17
Polynomial      148
Positive negative      34 87 139 142
Potential tokens      138
Prawitz      8 80
Predecessor (pred)      51 72 91
Preservation of joins (linearity)      99
Primary equations      see “Conversion”
Principal branch or premise      75 76
Product and conjunction      11 15 19
Product in F      84 145
Product, coherence space (\&)      61 68
Product, linear logic ($\otimes$ and \&)      152
Product, projection      11 61 68 84
Programs      17 53 72 84 124
Projection (embedding)      135 142
PROLOG      28 105 112
proof      5
Proof net      155
Proof of program      53
Proof structure      156
Provably total      53 124
Ptolomeic astronomy      1
Pullback      54 59 61 65 137 141
Quantifiers      see “Universal existential
Real numbers      114
Realisability      7
Recursion and iteration      51 70 90
Recursion, recurrence relation      50
Recursion, recursor (R)      48
Recursion, semantics      70
Redex      18 24 48
Reducibility      27 58 123
Reducibility in F      115
Reducibility in T      49
Reducibility, $\lambda$-calculus      42
Reduction      18
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте