√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   
blank
јвторизаци€

       
blank
ѕоиск по указател€м

blank
blank
blank
 расота
blank
Diestel R. Ч Graph Theory
Diestel R. Ч Graph Theory



ќбсудите книгу на научном форуме



Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter


Ќазвание: Graph Theory

јвтор: Diestel R.

јннотаци€:

This book is a concise, yet carefully written, introduction to modern graph theory, covering all its recent developments. It can be used both as a reliable textbook for an introductory course and as a graduate text: on each topic it covers all the basic material in full detail, and adds one or two deeper results (again with detailed proofs) to illustrate the more advanced methods of that field. This second edition extends the first in two ways. It offers a thoroughly revised and updated chapter on graph minors, which now includes full new proofs of two of the central Robertson-Seymor theorems (as well as a detailed sketch of the entire proof of their celebrated Graph Minor Theorem). Second, there is now a section of hints for all the exercises, to enhance their value for bith individual study and classroom use.


язык: en

–убрика: ћатематика/јлгебра/ омбинаторика/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

»здание: Second edition

√од издани€: 2000

 оличество страниц: 312

ƒобавлена в каталог: 07.12.2004

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
blank
ѕредметный указатель
Independent edges      3 29Ч38
Independent events      231
Independent paths      7 55 56Ч57 283
Independent vertices      3 39 110 232
Indicator random variable      234 295
Induced subgraph      3 111 116Ч117 290
Induced subgraph in Ramsey theory      196Ч206
Induced subgraph in random graph      232 249
Induced subgraph of all imperfect graphs      116Ч117 120
Induced subgraph of all large connected graphs      207
Induced subgraph of almost all graphs      238 248
Induced subgraph, cycle      7Ч8 21 47 75 86 111 117 290
Induced subgraph, tree      178
Infinite graphs      ix 2 28 41 166 209 248 280
Infinity lemma      192 210 294
init(e)      23
Initial vertex      25
Inner face      70
Inner vertex      6
Integral, flow      126 128
Integral, function      126
Integral, random variable      242
Interior of a path, P      6Ч7
Interior of an arc      68
Internally disjoint      see УIndependentФ
Intersection      3
Intersection, graph      279
Interval graph      120 279
INTO      255
Intuition      70 231
Invariant      3
Irreducible graph      279
Isolated vertex      5 248
Isomorphic      3
Isomorphism      3
Isomorphism of plane graphs      76Ч80
Isthmus      see УBridgeФ
Jaeger, F.      146
Janson, S.      249
Jensen, T.R.      120 146 281
Johnson, D.      282
Join      2
Jordan, C.      68 70
Jung, H.A.      62 186
k-choosable      105
k-chromatic      95
k-colourable      95
k-constructible      101Ч102 118
k-list-colourable      see Уk-choosableФ
k-mesh      265
k-set      1
Kahn, J.      122
Karonski, M.      249
Kempe, A.B.      121 227
Kernel of directed graph      108Ч109
Kernel of incidence matrix      24
KirchhoffТs law      123 124
Klein four-group      135
Kleitman, D.J.      121
Knot theory      146
Knotless graph      277
Kohayakawa, Y.      167
Kollar, J.      167
Komlos, J.      167 170 186 210 226
Konig, D.      30 42 52 103 119 192 210
Konig, duality theorem      30 39 111
Konig, infinity lemma      192 210 294
Konigsberg bridges      19
Kostochka, A.V.      179
Kruskal, J.A.      253 280 296
Kuratowski, C      80Ч84 274
Kuratowski-type characterization      90 274Ч275 281Ч282
L(G)      4
Larman, D.G.      62
Latin square      119
Leaf      12 27
Lean tree-decomposition      261
Length of a cycle      7
Length of a path      6 8
Length of a walk      9
Line (edge)      2
Line (edge), graph      4 96 185
Linear algebra      20Ч25 47Ч49 85Ч86 116
Linear programming      145
Linked by a path      6
Linked by an arc      68
Linked, (k,l)-linked      170
Linked, k-linked      61Ч63 66
Linked, k-linked vs. k-connected      62 65
Linked, set      170
Linked, tree-decomposition      261
Linked, vertices      6 68
List colouring      105Ч110 121Ч122
List colouring, bipartite graphs      108Ч110 119
List colouring, BrooksТs theorem      121
List colouring, conjecture      108 119 122
List-chromatic index      105 108Ч110 121Ч122
List-chromatic number      see УChoice numberФ
log, ln      1
Logarithms      1
Loop      25
Lovasz, L.      42 112 115 121 122 167
Luczak, T.      249 250
MacLane, S.      85 92
Mader, W.      11 56Ч57 61 65 66 178 184 186 187
Magnanti, T.L.      145
Mani, P.      62
Map colouring      95Ч97 117 120 136
Markov chain      250
MarkovТs inequality      233 237 242 244
Marriage theorem      31 33 42 285
Matchable      36
Matching      29Ч42
Matching and edge colouring      119
Matching in bipartite graphs      29Ч34 111
Matching in general graphs      34Ч38
Matching of vertex set      29
Mate, A.      210
Matroid theory      66 93
Max-flow min-cut theorem      125 127 144 145
Maximal      4
Maximal acyclic graph      12
Maximal planar graph      80 84 90 92 183 185
Maximal plane graph      73 80
Maximum degree      5
Maximum degree and chromatic index      103Ч105
Maximum degree and chromatic number      99
Maximum degree and list-chromatic index      110 122
Maximum degree and radius      9 26
Maximum degree and Ramsey numbers      194Ч196
Maximum degree, bounded      161 194
Menger, K.      42 50Ч55 64 144 288
Milgram, A.N.      39
Minimal      4
Minimal connected graph      12
Minimal cut      22 88 136
Minimal k-connected graph      65
Minimal non-planar graph      90
Minimal separating set      63
Minimal set of forbidden minors      274 280 281Ч282
Minimum degree      5
Minimum degree and average degree      5
Minimum degree and choice number      106
Minimum degree and chromatic number      99 100
Minimum degree and circumference      8
Minimum degree and connectivity      11 65Ч66
Minimum degree and girth      178 179Ч180 237
Minimum degree and linkability      171
Minimum degree forcing, Hamilton cycle      214 226
Minimum degree forcing, long cycles      8
Minimum degree forcing, long paths      8 166
Minimum degree forcing, short cycles      179Ч180 237
Minimum degree forcing, trees      13
Minor      16Ч19 17
Minor $K^4$      182 263
Minor $K^5$      183 186
Minor $K^5$ and $K_{3,3}$      80Ч84
Minor $K^6$      183
Minor $K^r$      180 181
Minor $K_{3,3}$      92 185
Minor and planarity      80Ч84 90
Minor and WQO      251Ч277 (see also УTopological minorФ)
Minor of all large 3- or 4-connected graphs      208
Minor of multigraph      26
Minor vs. topological minor      18Ч19 80
Minor, forbidden      181Ч185 263Ч277 279 280 281Ч282
Minor, forced      174 179Ч186
Minor, infinite      280
Minor, Petersen graph      140
Minor, relation      18 274
Minor, theorem      251 274Ч277 275
Minor, theorem for trees      253Ч254
Minor, theorem, proof      275Ч276
Mobius, crown      208
Mobius, ladder      183
Mohar, B.      92 121 281Ч282
Moment, first      see УMarkovТs inequalityФ
Moment, second      242Ч247
Monochromatic (in Ramsey theory), (vertex) set      191Ч193
Monochromatic (in Ramsey theory), induced subgraph      196Ч206
Monochromatic (in Ramsey theory), subgraph      191 193Ч196
Multigraph      25Ч26
Multigraph, list chromatic index of      122
Multigraph, plane      87
Multiple edge      25
Murty, U.S.R.      228
MX      15
N(v), N(U)      4
Nash Ч Williams, C.St.J.A.      58 60 66 280
Neighbour      3 4
Nesetril, J.      210 211
Network      125Ч128
Network theory      145
Node (vertex)      2
Normal tree      13Ч14 27 139 144 296
Nowhere, dense      61
Nowhere, zero      128 146
NULL      see УEmptyФ
Obstruction to small tree-width      258Ч260 264Ч265 280 281
octahedron      11 15
Odd component      34
Odd cycle      15 99 117 290
Odd degree      5
ON      2
One-factor theorem      35 66
Oouterplanar      91
Oporowski, B.      208
Order of a bramble      258
Order of a graph      2
Order of a mesh or premesh      265
Order of deletion/contraction      17
Order, partial      13 18 27 40 41 120 277
Order, quasi-      251Ч252 277Ч278
Order, tree-      13 27
Order, well-quasi-      251Ч253 275 277 278 280
Orientable surface      280
Orientable surface, plane as      137
Orientation      25 108 145 289
Orientation, cycle with      136Ч137
Oriented graph      25
Orlin, J.B.      145
Outer face      70 76Ч77
Oxley, J.G.      93 208
P      229
Palmer, E.M.      249
Parallel edges      25
Parallel paths      293
Parity      5 34 37 227
Part of tree-decomposition      255
Partially ordered set      40 41 42
Partition      1 60 191
Pasting      111 182 183 185 261
Path      6Ч9
Path, a-b-path      7 55
Path, alternating      29 32
Path, between given pairs of vertices      61Ч63 66 170
Path, cover      39Ч40 285
Path, directed      39
Path, disjoint paths      39 50Ч55
Path, edge-disjoint      55 57 58
Path, H-path      7 44Ч45 56Ч57 64 65 66
Path, independent paths      7 55 56Ч57 283
Path, induced      207
Path, length      6
Path, linkage      61Ч63 66 170 172
Path, long      8
Path-decomposition      279
Path-hamiltonian sequence      218
Path-width      279 281
Pelikan, J.      185
Perfect      111Ч117 119Ч120 122
Perfect graph conjecture      117
Perfect graph theorem      112 115 117 122
Perfect matching      see У1-factorФ
Petersen graph      140Ч141
Petersen, J.      33 36
Physics      146
Piecewise linear      67
Planar      80Ч89 274
Planar, embedding      76 80Ч93
Planarity criteria, Kuratowski      84
Planarity criteria, MacLane      85
Planarity criteria, Tutte      86
Planarity criteria, Whitney      89
Plane, dual      87
Plane, duality      87Ч89 91 136Ч139 288
Plane, graph      70Ч76
Plane, multigraph      37Ч89 136Ч139
Plane, triangulation      73 75 261
Plummer, M.D.      42
Point (vertex)      2
Pointwise greater      216
Polygon      68
Polygonal arc      68 69
Posa, L.      197 226
Power of a graph      218
PRECISION      296
Premesh      265
Probabilistic method      229 235Ч238 249
Projective plane      275 281
Promel, H.J.      117 122
Property      238
Property of almost all graphs      238Ч241 247Ч248
Property, hereditary      263
Property, increasing      241
Pseudo-random graph      210
pw(G)      259
Pym, J.S.      66
q(G)      34
Quasi-ordering      251Ч252 277Ч278
R(H)      191
R(k,c,r)      191
R(r)      189
r-partite      14
rad(G)      9
RADIUS      9
Radius and diameter      9 26
Radius and maximum degree      9 26
Rado, R.      210
RadoТs selection lemma      210
1 2 3 4
blank
–еклама
blank
blank
HR
@Mail.ru
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2020
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте