Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Diestel R. — Graph Theory
Diestel R. — Graph Theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Graph Theory

Àâòîð: Diestel R.

Àííîòàöèÿ:

This book is a concise, yet carefully written, introduction to modern graph theory, covering all its recent developments. It can be used both as a reliable textbook for an introductory course and as a graduate text: on each topic it covers all the basic material in full detail, and adds one or two deeper results (again with detailed proofs) to illustrate the more advanced methods of that field. This second edition extends the first in two ways. It offers a thoroughly revised and updated chapter on graph minors, which now includes full new proofs of two of the central Robertson-Seymor theorems (as well as a detailed sketch of the entire proof of their celebrated Graph Minor Theorem). Second, there is now a section of hints for all the exercises, to enhance their value for bith individual study and classroom use.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Àëãåáðà/Êîìáèíàòîðèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Second edition

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 312

Äîáàâëåíà â êàòàëîã: 07.12.2004

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Cut, minimal      22 88
Cut-cycle duality      136—138
Cut-edge      see “Bridge”
Cutvertex      10 43—44
CYCLE      7—9
Cycle in multigraphs      25
Cycle with orientation      136—138
Cycle, directed      119
Cycle, double cover conjecture      141 144
Cycle, expected number      234
Cycle, Hamilton      144 213—228
Cycle, induced      7—8 21 47 86 111 117 290
Cycle, length      7
Cycle, long      8 26 64 118
Cycle, non-separating      47 86
Cycle, odd      15 99 117 290
Cycle, short      101 179—180 235 237
Cycle, space      21 23—24 27—28 47—49 85—86 89 92—93
Cycle, threshold function      247
Cycle-cut duality      136—138
Cyclomatic number      21
d(G)      5
D(V)      5
d(x,y)      8
Degeneracy      see “Colouring number”
Degree      5
Degree, sequence      216
Deletion      4
Dense graphs      148 150
Density of pair of vertex sets      153
Density, edge density      148
Density, upper density      166
Depth-first search tree      13 27
Deuber, W.      197
diam(G)      8
Diameter      5—9 248
Diameter and girth      8
Diameter and radius      9
Diestel, R.      186 281
Difference of graphs      4
Digon      see “Double edge”
Digraph      see “Directed graph”
Dilworth, R.P.      40 285 294
Dirac, G.A.      111 186 187 214 226
Directed cycle      119
Directed edge      25
Directed graph      25 108 119
Directed path      39
Direction      124
Disjoint graphs      3
Distance      8
Double counting      75 92 114—115 234 244
Double edge      25
Double wheel      208
Drawing      67 76—80
Drawing convex      92
Drawing straight-line      90
Dual and connectivity      91
Dual, abstract      55—89 91
Dual, plane      81 91
Duality of plane multigraphs      87—89
Duality, cycles and cuts      23—24 88—89 136
Duality, flows and colourings      136—139 291
E(G)      2
E(v), E'(w), ...      2
E(X)      231
E(X,Y), E'(U,W), ...      2
EDGE      2
Edge colouring      96 103—105 191
Edge colouring and flow number      135
Edge colouring and matchings      119
Edge contraction      16
Edge contraction and 3-connectedness      45
Edge contraction in multigraph      25
Edge contraction vs. minors      17
Edge cover      119
Edge density      5 148
Edge density and average degree      5
Edge density and regularity lemma      154 166
Edge density, forcing minors/topological minors      169—180
Edge density, forcing subgraphs      147—167
Edge of a multigraph      25
Edge space      20 85
Edge, crossing a partition      21
Edge, directed      25
Edge, double      25
Edge, plane      10
Edge, X-Y edge      2
Edge-chromatic number      see “Chromatic index”
Edge-connectivity      11 55 58
Edge-disjoint spanning trees      58—61
Edge-maximal      4
Edge-maximal vs. extremal      149 182
Edge-maximal without $MK^5$      183
Edge-maximal without $TK^4$      182
Edge-maximal without $TK^5$, $TK_{3,3}$      84
Edge-maximal without $TK_{3,3}$      185
Edmonds, J.      42 282
Embedding in $S^2$      69—70 77
Embedding in surface      74 92 274—276 280 281—282
Embedding in the plane      16 80—93
Embedding of bipartite graphs      202—204
Empty graph      2
End of edge      2 25
End of path      6
Endpoints of arc      68
Endvertex      2 25
Endvertex, terminal vertex      25
Equivalence in quasi-order      211
Equivalence of planar embeddings      76—80 19 90
Equivalence of points in $\mathbb{R}^2$      68
Erdos — Sos conjecture      152 166 167
Erdos, P.      101 121 151 152 163 166 167 187 191 208 209 210 215 228 232 235—231 243 249 295
Euler, characteristic      276
Euler, formula      74—75 89 90 289
Euler, L.      18—19 14
Euler, tour      19—20 291
Eulerian graph      19
Even, degree      19 33
Even, graph      133 135 145
Event      231
Evolution of random graphs      241 249
ex(n,H)      149
Exceptional set      153
Excluded minors      see “Forbidden minors”
Existence proof, probabilistic      121 229 233 235—237
Expanding a vertex      113
Expectation      233—234 242
Exterior face      see “Outer face”
Externally k-connected      264 280
Extremal vs. edge-maximal      149 182
Extremal without $MK^5$      183
Extremal without $TK^4$      182
Extremal without $TK^5$      184
Extremal without $TK_{3,3}$      185
Extremal, bipartite graph      165
Extremal, graph      149—150
Extremal, graph theory      147 151 160 166
F(G)      70
f(X,Y), g(U,W), ...      124
Face      70
Factor      29
Factor, 1-factor      29—38
Factor, 1-factor theorem      35 42 66
Factor, 2-factor      33
Factor, k-factor      29
Factor-critical      36 285
Fajtlowicz, S.      187
Fan      55
Fan-version of Menger’s theorem      55
Finite graph      2
First order sentence      239
First point on frontier      68
Five colour theorem      96 121 141
Five colour theorem, list version      106 121
Five-flow conjecture      140 141
Fleischner, H.      218 295
Flow      123—146 125—126
Flow in plane graphs      136—139
Flow number      131—134 140 144
Flow, 2-flow      133
Flow, 3-flow      133—134 141
Flow, 4-flow      134—135 140—141
Flow, 6-flow theorem      141—143
Flow, conjectures      140—141
Flow, group-valued      128—133 144
Flow, H-flow      128—133
Flow, integral      126 128
Flow, k-flow      131—134 140—143 145
Flow, network flow      125—128 291
Flow, polynomial      130 146
Flow, total value of      126
Flow-colouring duality      136—139 291
Forbidden minors and chromatic number      181—185
Forbidden minors and tree-width      263—274
Forbidden minors, expressed by      263 274—277
Forbidden minors, minimal set of      274 280 281
Forbidden minors, planar      264
Forcibly hamiltonian      see “Hamiltonian sequence”
Forcing $MK^r$      179—184 186
Forcing $TK^5$      184 187
Forcing $TK^r$      61 170—178 186
Forcing, high connectivity      11
Forcing, induced trees      178
Forcing, large chromatic number      101—103
Forcing, linkability      62—63 66 171—174
Forcing, long cycles      8 26 118 213—228
Forcing, long paths      8 166
Forcing, minor with large minimum degree      174 179
Forcing, short cycles      179—180 237
Forcing, subgraph      13 147—167
Forcing, tree      13 178
Forcing, triangle      119 209
Ford, L.R. Jr.      127 145
Forest      12
Forest, minor      281
Forest, partitions      60—61
Four colour problem      120 186
Four colour theorem      96 141 145 181 183 185 215 227
Four colour theorem, history      120—121
Four-flow conjecture      140—141
Frank, A.      65 145
Frobenius, F.G      42
From ... to      6
Frontier      68
Fulkerson, D.R.      122 127 145
g(G)      7
Gallai — Edmonds matching theorem      36—38 42
Gallai, T.      39 42 66 167
Galvin, F.      109
Gasparian, G.S.      122
Genus and colouring      121
Genus of a graph      90 280
Genus of a surface      276
Geometric dual      see “Plane dual”
Gibbons, A.      145
Gilmore, P.C.      120
girth      7
Girth and average degree      237
Girth and chromatic number      101 121 235—237
Girth and connectivity      237
Girth and diameter      8
Girth and minimum degree      8 179—180 237
Girth and minors      179—180
Girth and planarity      89
Girth and topological minors      178
Godsil, C.      28
Golumbic, M.C.      122
Good characterization      274 282
Good pair      252
Good sequence      252
Gorbunov, K.Yu.      281
Goring, F.      66
Graham, R.L.      210
Graph      2—4 25 26
Graph, invariant      3
Graph, minor theorem      251 274—277 275
Graph, partition      60
Graph, plane      70—76 87—89 96—97 106—108 136—139
Graph, process      250
Graph, property      238
Graph, simple      26
Graph-theoretical isomorphism      77—78
Graphic sequence      see “Degree sequence”
Greedy algorithm      98 108 117
grid      90 184 258
Grid, minor      260 264—274
Grid, theorem      264
Grid, tree-width of      260 278 281
Griinwald, T.      66
Grotzsch, H.      97 141 145
Group-valued flow      128—133
Guthrie, F.      120
Gyarfas, A.      178 185
Hadwiger, conjecture      169—170 181—183 185 186—187
Hadwiger, H.      181 186 187
Hajnal, A.      197 210
Hajos, construction      101—102
Hajos, G.      102 187
Haken, W.      121
Halin, R.      65—66 227 280—281
Hall, P.      31 42
Hamilton closure      226
Hamilton cycle      213—228
Hamilton cycle and 4-flows      144 215
Hamilton cycle and degree sequence      216—218 226
Hamilton cycle and minimum degree      214
Hamilton cycle and the four colour theorem      215
Hamilton cycle in $G^2$      218—226
Hamilton cycle in $G^3$      227
Hamilton cycle in almost all graphs      241
Hamilton cycle in planar graphs      215
Hamilton cycle, power of      226
Hamilton cycle, sufficient conditions      213—218
Hamilton path      213 218
Hamilton, W.R.      227
Hamiltonian sequence      216
Hamiltonian, graph      213
Harant, J.      66
head      see “Terminal vertex”
Heawood, P.J.      121 145
Heesch, H.      121
Hereditary graph property      263 274—277
Hereditary graph property, algorithmic decidability      276—277
Higman, D.G.      252 280
Hoffman, A.J.      120
Hypergraph      25
In (a graph)      7
incidence      2
Incidence, encoding of planar embedding      see “Combinatorial isomorphism”
Incidence, map      25—26
Incidence, matrix      24
incident      2 72
Increasing property      241 248
Independence number      110—117
Independence number and connectivity      214—215
Independence number and Hamilton cycles      215
Independence number and long cycles      118
Independence number and path cover      39
Independence number of random graph      232 248
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå