|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Rencher A.C. — Methods of multivariate analysis |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Correlation matrix: sample correlation matrix 60—61
Correlation matrix: sample correlation matrix from covariance matrix 61
Correlation matrix: sample correlation matrix from data 60
Correlation: and cosine of angle between two vectors 49—50
Correlation: and law of cosines 49—50
Correlation: and orthogonality of two vectors 50
Correlation: canonical see Canonical correlation(s)
Correlation: intra-class correlation 198—199
Correlation: multiple see Multiple correlation
Correlation: of two linear combinations 67 72—73
Correlation: population correlation 49
Correlation: sample correlation (r) 49
Correspondence analysis 514—530
Correspondence analysis, contingency table: higher-way table 526 528—529
Correspondence analysis, contingency table: two-way table 514—516 519 521
Correspondence analysis, coordinates for row and column points 521—525
Correspondence analysis, coordinates for row and column points, distances between column points 523—524
Correspondence analysis, coordinates for row and column points, distances between row points 523—524
Correspondence analysis, coordinates for row and column points, singular value decomposition 522
Correspondence analysis, coordinates for row and column points, singular value decomposition, generalized singular value decomposition 522
Correspondence analysis, correspondence matrix 515—516
Correspondence analysis, definition (graph of contingency table) 514—515
Correspondence analysis, independence of rows and columns, chi-square 515 520—521
Correspondence analysis, independence of rows and columns, chi-square in terms of frequencies 520
Correspondence analysis, independence of rows and columns, chi-square in terms of inertia 521
Correspondence analysis, independence of rows and columns, chi-square in terms of relative frequencies 520
Correspondence analysis, independence of rows and columns, chi-square in terms of row and column profiles 520—521
Correspondence analysis, independence of rows and columns, testing 519—521
Correspondence analysis, inertia 515 524
Correspondence analysis, multiple correspondence analysis 526—530
Correspondence analysis, multiple correspondence analysis, Burt matrix 526—529
Correspondence analysis, multiple correspondence analysis, indicator matrix 526—527
Correspondence analysis, profiles of rows and columns 515—519
Correspondence analysis, rows and columns 514—525
Correspondence analysis, rows and columns, association 514
Correspondence analysis, rows and columns, inertia 515 524
Correspondence analysis, rows and columns, interaction 514—515
Correspondence analysis, rows and columns, points for plotting 521—525
Correspondence analysis, rows and columns, profiles 515—519
Correspondence analysis, singular value decomposition 522 524
Correspondence analysis, singular value decomposition, generalized singular value decomposition 522
Covariance matrix: and correlation matrix 61
Covariance matrix: compound symmetry 206
Covariance matrix: of linear combinations of variables 69—73
Covariance matrix: partitioned 62—66 362
Covariance matrix: partitioned, dependence of y and x and cov(y, x) 63
Covariance matrix: partitioned, difference between cov and cov(y, x) 63
Covariance matrix: partitioned, three or more subsets 64—66
Covariance matrix: pooled covariance matrix 122—123
Covariance matrix: population covariance matrix 58—59
Covariance matrix: sample covariance matrix (S) 57—60
Covariance matrix: sample covariance matrix (S) and sample mean vector, independence of 92
Covariance matrix: sample covariance matrix (S) from observations 57—58
Covariance matrix: sample covariance matrix (S), distribution of 91—92
Covariance matrix: sample covariance matrix (S), distribution of, Wishart distribution 91—92
Covariance matrix: sample covariance matrix (S), from data matrix 58
Covariance matrix: sample covariance matrix (S), positive definiteness of 67
Covariance matrix: sphericity 206 250—252
Covariance matrix: tests on 248—268. See also Tests of hypotheses covariance
Covariance matrix: unbiasedness of 59
Covariance matrix: uniformity 206 252—254
Covariance: and independence 46—47
Covariance: and orthogonality 47—48
Covariance: of two linear combinations 67—68 72
Covariance: population covariance 46—47
Covariance: sample covariance 46—48
Covariance: sample covariance and linear relationships 47
Covariance: sample covariance , expected value of 47
Cross validation 310—311
Cyclical data 153
Data matrix (Y) 55
Data sets: air pollution data 502
Data sets: airline distance data 508
Data sets: athletic record data 480
Data sets: bar steel data 192
Data sets: beetles data 150
Data sets: birth and death data 543
Data sets: blood data 237
Data sets: blood pressure data 245
Data sets: bronchus data 154
Data sets: byssinosis data 545—546
Data sets: calcium data 56
Data sets: calculator speed data 210
Data sets: chemical data 340
Data sets: city crime data 456
Data sets: coated pipe data 135
Data sets: cork data 239
Data sets: cyclical data 153
Data sets: dental data 227
Data sets: diabetes data 65
Data sets: do-it-yourself data 529
Data sets: dogs data 243—244
Data sets: dystrophy data 152
Data sets: engineer data 151
Data sets: fabric wear data 238
Data sets: fish data 235
Data sets: football data 280—281
Data sets: glucose data 80—81
Data sets: guinea pig data 201
Data sets: height-weight data 45
Data sets: hematology data 109—110
Data sets: mandible data 247
Data sets: mice data 241
Data sets: Norway crime data 544
Data sets: people data 526
Data sets: perception data 419
Data sets: piston ring data 518
Data sets: plasma data 246
Data sets: politics data 542
Data sets: probe word data 70
Data sets: protein data 483
Data sets: psychological data 125
Data sets: ramus bone data 78
Data sets: repeated data 218
Data sets: Republican vote data 53
Data sets: road distance data 541
Data sets: rootstock data 171
Data sets: Seishu data 263
Data sets: snapbean data 236
Data sets: sons data 79
Data sets: steel data 273
Data sets: survival data 239—241
Data sets: temperature data 269
Data sets: trout data 242
Data sets: voting data 512
Data sets: weight gain data 243
Data sets: wheat data 503
Data sets: words data 154
Data, types of 3–4. See also Multivariate data
Density function 43
Dental data 227
Descriptive statistics 2
Determinant 26—29
Determinant as product of eigenvalues 34
Determinant of diagonal matrix 27
Determinant of inverse 29
Determinant of nonsingular matrix 28
Determinant of partitioned matrix 29
Determinant of positive definite matrix 28
Determinant of product 28
Determinant of scalar multiple of a matrix 28
Determinant of singular matrix 28
Determinant, definition of 26—27
Diabetes data 65
Diagonal matrix 8
Discriminant analysis (descriptive) 270—296
Discriminant analysis (descriptive) and canonical correlation 282 376—378
Discriminant analysis (descriptive) and classification analysis 270
Discriminant analysis (descriptive) and eigenvalues 278—279
Discriminant analysis (descriptive), discriminant functions: for several groups 165 184—185 191 277—279
| Discriminant analysis (descriptive), discriminant functions: for several groups, measures of association for 282
Discriminant analysis (descriptive), discriminant functions: for two groups 126—132 271—275
Discriminant analysis (descriptive), discriminant functions: for two groups and distance 272
Discriminant analysis (descriptive), interpretation of discriminant functions 288—291
Discriminant analysis (descriptive), interpretation of discriminant functions, correlations (structure coefficients) 291
Discriminant analysis (descriptive), interpretation of discriminant functions, partial F-values 290
Discriminant analysis (descriptive), interpretation of discriminant functions, rotation 291
Discriminant analysis (descriptive), interpretation of discriminant functions, standardized coefficients 289
Discriminant analysis (descriptive), purposes of 277
Discriminant analysis (descriptive), scatter plots 291—293
Discriminant analysis (descriptive), selection of variables 233 293—296
Discriminant analysis (descriptive), several groups 277—279
Discriminant analysis (descriptive), standardized discriminant functions 282—284
Discriminant analysis (descriptive), stepwise discriminant analysis 233 293—296
Discriminant analysis (descriptive), tests of significance 284—288
Discriminant analysis (descriptive), two groups 271—275
Discriminant analysis (descriptive), two groups and multiple regression 130—132 275—276
Discriminant analysis (predictive) see Classification analysis
Dispersion matrix see Covariance matrix
Distance between vectors 76—77 83 115 118 123 271—272
Distribution: beta 97
Distribution: bivariate normal 46 84 88—89
Distribution: chi-square 86
Distribution: elliptically symmetric 103
Distribution: F 119 138 158 162—163 179 254—255
Distribution: multivariate normal see Multivariate normal distribution; Multivariate normality tests
Distribution: univariate normal 82—83 86
Distribution: univariate normal, tests for see Univariate normality tests
Distribution: Wishart 91—92
Do-it-yourself data 529
Dogs data 243—244
Dummy variables 173—174 282 315 376—377
Dystrophy data 152
E matrix 160—161 339 342—344
Eigenvalues 32—37 168 362—365 382—384 397—398 416—419 422—423
Eigenvectors 32—35 363—365 382—384 397—398 416—418 420—422
Elliptically symmetric distribution 103
EM algorithm 75 491
Engineer data 151
Error rate(s) 307—313
Error rate(s), actual error rate 308
Error rate(s), apparent error rate 307
Error rate(s), apparent error rate, bias in 308 309—311
Error rate(s), classification table 307—308
Error rate(s), cross validation 310—311
Error rate(s), experimentwise error rate 1—2 128—129 183—185
Error rate(s), holdout method 310—311 318
Error rate(s), leaving-one-out method 310—311 318
Error rate(s), partitioning the sample 310
Error rate(s), resubstitution 307—308
Expected value: of random matrix 59
Expected value: of random vector [E(y)] 55—56
Expected value: of sample covariance matrix [E(S)] 59
Expected value: of sample mean 44
Expected value: of sample mean vector 56
Expected value: of sample variance 44
Expected value: of sum or product of random variables 46
Expected value: of univariate random variable [E(y)] 43
Experimental units 1
F-test(s): ANOVA 158 188
F-test(s): between-subjects tests in repeated measures 212 216 221
F-test(s): comparing two variances 254—255
F-test(s): contrasts 179
F-test(s): equivalent to 119 124 137—138
F-test(s): in multiple regression 138 330—332
F-test(s): partial F-test 127 138 232 293—296
F-test(s): stepwise selection 233 293—296 336
F-test(s): test for additional information 137
F-test(s): test for individual variables in MANOVA 183—186
F-test(s): Wilks' : exact F transformation for 162—163
F-test(s): Wilks' : F approximation for 162—163
Fabric wear data 238
Factor analysis 408—450
Factor analysis and principal components 408—409 447—448
Factor analysis and regression 410 439—440
Factor analysis, assumptions 410—412
Factor analysis, assumptions, failure of assumptions, consequences of 414 444—445
Factor analysis, common factors 409
Factor analysis, communalities 413 418 422—423 427—428
Factor analysis, communalities, estimation of 418 422 424 428
Factor analysis, eigenvalues 416—419 422—423 427 442 446
Factor analysis, eigenvectors 416—418 420 422
Factor analysis, factor scores 438—443
Factor analysis, factor scores, averaging method 440
Factor analysis, factor scores, regression method 439—440
Factor analysis, factors 408—414
Factor analysis, factors, common 409
Factor analysis, factors, definition of 408—409
Factor analysis, factors, interpretation of 409 438
Factor analysis, factors, number of 426—430
Factor analysis, Heywood case 424—425
Factor analysis, loadings: definition of 409
Factor analysis, loadings: estimation of 415—426
Factor analysis, loadings: estimation of, comparison of methods 424
Factor analysis, loadings: estimation of, fit of the model 419
Factor analysis, loadings: estimation of, from S or R 418—419 421—422
Factor analysis, loadings: estimation of, iterated principal factor method 424—425
Factor analysis, loadings: estimation of, iterated principal factor method, Heywood case 424—425
Factor analysis, loadings: estimation of, maximum likelihood method 425—426
Factor analysis, loadings: estimation of, principal component method 415—421
Factor analysis, loadings: estimation of, principal factor method 421—424
Factor analysis, model 409—414
Factor analysis, modeling covariances or correlations 408 410 412 414 417
Factor analysis, number of factors to retain 426—430
Factor analysis, number of factors to retain, average eigenvalue 427—428
Factor analysis, number of factors to retain, comparison of methods 428—430
Factor analysis, number of factors to retain, hypothesis test 427—428
Factor analysis, number of factors to retain, indeterminacy of for certain data sets 428—429
Factor analysis, number of factors to retain, scree plot 427—428
Factor analysis, number of factors to retain, variance accounted for 427—428
Factor analysis, orthogonal factors 409—415 431—435
Factor analysis, rotation 414—415 417 430—437
Factor analysis, rotation, complexity of the variables 431
Factor analysis, rotation, interpretation of factors 409 438
Factor analysis, rotation, oblique rotation 431 435—437
Factor analysis, rotation, oblique rotation and orthogonality 437
Factor analysis, rotation, oblique rotation, pattern matrix 436
Factor analysis, rotation, orthogonal rotation 431—435
Factor analysis, rotation, orthogonal rotation, analytical 434
Factor analysis, rotation, orthogonal rotation, communalities 415 431
Factor analysis, rotation, orthogonal rotation, graphical 431—433
Factor analysis, rotation, orthogonal rotation, varimax 434—435
Factor analysis, rotation, simple structure 431
Factor analysis, scree plot 427—428
Factor analysis, simple structure 431
Factor analysis, singular matrix and 422
Factor analysis, specific variance 410 417
Factor analysis, specificity see Specific variance
Factor analysis, total variance 418—419 427
Factor analysis, validity of factor analysis model 443—447
Factor analysis, validity of factor analysis model, how well model fits the data 419 444
Factor analysis, validity of factor analysis model, measure of sampling adequacy 445
Factor analysis, variance due to a factor 418—419
Fish data 235
Fisher's classification function 300—302
Football data 280—281
Gauss — Markov theorem 341
Generalized population variance 83—85 105
Generalized sample variance 73
Generalized sample variance, total sample variance 73 383 409 418 427
Generalized singular value decomposition 522
Geometric mean 174
Glucose data 80
Graphical display of multivariate data 52—53
Graphical procedures 504—547
Graphical procedures, biplots see Biplots
Graphical procedures, correspondence analysis see Correspondence analysis
Graphical procedures, multidimensional scaling see Multidimensional scaling
Growth curves 221—230
Growth curves, contrast matrices 222—225 227—230
|
|
|
Ðåêëàìà |
|
|
|