|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Rencher A.C. — Methods of multivariate analysis |
|
|
Ïðåäìåòíûé óêàçàòåëü |
(squared multiple correlation) 332—333 337 349 355 361—362 365 375—376 422—423
-statistic: additional information, test for 136—139
-statistic: and F-distribution 119 124 137—138
-statistic: and profile analysis 139—148
-statistic: and profile analysis, one sample 139—141
-statistic: and profile analysis, two samples 141—148
-statistic: assumptions for 122
-statistic: characteristic form 118 123
-statistic: chi-square approximation for 120
-statistic: computation of 130—132
-statistic: computation of, by MANOVA 130
-statistic: computation of, y regression 130—132
-statistic: for a subvector 136—139
-statistic: full and reduced model test 137
-statistic: likelihood ratio test 126
-statistic: matched pairs 134—136
-statistic: one-sample 117—121
-statistic: paired observations 134—136
-statistic: properties of 119—120 123—124
-statistic: table of critical values for 558—561
-statistic: two-sample 122—126
Additional information, test for 136—139 231—233
Air pollution data 502
Airline distance data 508
Algebra, matrix see Matrix algebra
Analysis of variance: multivariate (MANOVA): additional information, test for 231—233
Analysis of variance: multivariate (MANOVA): and canonical correlation 376—377
Analysis of variance: multivariate (MANOVA): association, measures of 173—176
Analysis of variance: multivariate (MANOVA): assumptions, checking on 198—199
Analysis of variance: multivariate (MANOVA): contrasts 180—183
Analysis of variance: multivariate (MANOVA): discriminant function 165 184—185 191
Analysis of variance: multivariate (MANOVA): growth curves 221—230. See also Growth curves; Repeated measures designs
Analysis of variance: multivariate (MANOVA): H and E matrices 160—161
Analysis of variance: multivariate (MANOVA): higher order models 195—196
Analysis of variance: multivariate (MANOVA): individual variables, discriminant function 184—185 191
Analysis of variance: multivariate (MANOVA): individual variables, experimentwise error rate 183—185
Analysis of variance: multivariate (MANOVA): individual variables, protected tests 184
Analysis of variance: multivariate (MANOVA): individual variables, tests on 163—164 183—186
Analysis of variance: multivariate (MANOVA): Lawley — Hotelling test 167
Analysis of variance: multivariate (MANOVA): Lawley — Hotelling test, table of critical values 524—528
Analysis of variance: multivariate (MANOVA): likelihood ratio test 164
Analysis of variance: multivariate (MANOVA): mixed models 196—198
Analysis of variance: multivariate (MANOVA): mixed models, expected mean squares 196—197
Analysis of variance: multivariate (MANOVA): multivariate association, measures of 173—176
Analysis of variance: multivariate (MANOVA): one-way 158—161
Analysis of variance: multivariate (MANOVA): one-way contrasts 180—183
Analysis of variance: multivariate (MANOVA): one-way contrasts, orthogonal 181
Analysis of variance: multivariate (MANOVA): one-way model 159
Analysis of variance: multivariate (MANOVA): one-way, unbalanced 168
Analysis of variance: multivariate (MANOVA): Pillai's test 166
Analysis of variance: multivariate (MANOVA): profile analysis 199—201
Analysis of variance: multivariate (MANOVA): repeated measures 204—221. See also Repeated measures designs; Growth curves
Analysis of variance: multivariate (MANOVA): Roy's test (union-intersection) 164—166
Analysis of variance: multivariate (MANOVA): Roy's test (union-intersection), table of critical values 517—520
Analysis of variance: multivariate (MANOVA): stepwise discriminant analysis 233
Analysis of variance: multivariate (MANOVA): stepwise selection of variables 233
Analysis of variance: multivariate (MANOVA): test for additional information 231—233
Analysis of variance: multivariate (MANOVA): test on a subvector 231—233
Analysis of variance: multivariate (MANOVA): test statistics 161—173
Analysis of variance: multivariate (MANOVA): test statistics and 169
Analysis of variance: multivariate (MANOVA): test statistics eigenvalues 168
Analysis of variance: multivariate (MANOVA): test statistics, comparison of 169—170 176—178
Analysis of variance: multivariate (MANOVA): test statistics, power of 176—178
Analysis of variance: multivariate (MANOVA): tests on individual variables 163—174 183—186 191
Analysis of variance: multivariate (MANOVA): tests on individual variables, discriminant function 165 184—185 191
Analysis of variance: multivariate (MANOVA): tests on individual variables, experimentwise error rate 183—185
Analysis of variance: multivariate (MANOVA): tests on individual variables, protected tests 184
Analysis of variance: multivariate (MANOVA): two-way 188—195
Analysis of variance: multivariate (MANOVA): two-way contrasts 190—191
Analysis of variance: multivariate (MANOVA): two-way discriminant function 191
Analysis of variance: multivariate (MANOVA): two-way interactions 189—190
Analysis of variance: multivariate (MANOVA): two-way main effects 189—190
Analysis of variance: multivariate (MANOVA): two-way model 189
Analysis of variance: multivariate (MANOVA): two-way test statistics 190
Analysis of variance: multivariate (MANOVA): two-way tests on individual variables 191
Analysis of variance: multivariate (MANOVA): unbalanced one-way 168
Analysis of variance: multivariate (MANOVA): union-intersection test 164
Analysis of variance: multivariate (MANOVA): Wilks' (likelihood ratio) test 161—164
Analysis of variance: multivariate (MANOVA): Wilks' (likelihood ratio) test, chi-square approximation 162
Analysis of variance: multivariate (MANOVA): Wilks' (likelihood ratio) test, F approximation 162
Analysis of variance: multivariate (MANOVA): Wilks' (likelihood ratio) test, partial -statistic 232
Analysis of variance: multivariate (MANOVA): Wilks' (likelihood ratio) test, properties of 162—164
Analysis of variance: multivariate (MANOVA): Wilks' (likelihood ratio) test, table of critical values 501—516
Analysis of variance: multivariate (MANOVA): Wilks' (likelihood ratio) test, transformations to exact F 162—163
Analysis of variance: univariate (ANOVA): one-way 156—158
Analysis of variance: univariate (ANOVA): one-way contrasts 178—180
Analysis of variance: univariate (ANOVA): one-way contrasts, orthogonal 179—180
Analysis of variance: univariate (ANOVA): one-way SSH, SSE, F-statistic 158
Analysis of variance: univariate (ANOVA): two-way 186—188
Analysis of variance: univariate (ANOVA): two-way contrasts 188
Analysis of variance: univariate (ANOVA): two-way F-test 188
Analysis of variance: univariate (ANOVA): two-way interaction 187
Analysis of variance: univariate (ANOVA): two-way main effects 187—188
Analysis of variance: univariate (ANOVA): two-way model 186
anova see Analysis of variance univariate
Association, measures of 173—176 349—351
Athletic record data 480
Bar steel data 192
Beetles data 150
Bilinear form 19—20
Biplots 531—539
Biplots, coordinates of points 533—534
Biplots, coordinates of points, correlation 534
Biplots, coordinates of points, cosine 534 537
Biplots, points for observations 531—534
Biplots, points for variables 531—534
Biplots, principal component approach 531—532 535
Biplots, singular value decomposition 532—533 535
Birth and death data 543
Bivariate normal distribution 46 84 88—89 133
Blood data 237
Blood pressure data 245
Bonferroni critical values 127
Bonferroni critical values, table 562—565
Box's M-test 257—259
Box's M-test, table of exact critical values 588—589
Bronchus data 154
Burt matrix 526—529
Byssinosis data 545—546
Calcium dat 56
Calculator speed data 210
Canonical correlation(s) 174 260 361—378
Canonical correlation(s) and discriminant analysis 376—378
Canonical correlation(s) and eigenvalues 362—363 377—378
Canonical correlation(s) and MANOVA 376—378
Canonical correlation(s) and MANOVA, dummy variables 376—377
Canonical correlation(s) and measures of association 362 373—374
Canonical correlation(s) and multiple correlation 361—362 366 376
Canonical correlation(s) and regression 368—369 374—376
Canonical correlation(s) with grouping variables 174
Canonical correlation(s) with test for independence of two subvectors 260 367—368
Canonical correlation(s), canonical variates see Canonical variates
Canonical correlation(s), definition of 362—364
Canonical correlation(s), properties of 366—367
Canonical correlation(s), redundancy analysis 373—374
Canonical correlation(s), subset selection 376
Canonical correlation(s), tests of significance 367—371
Canonical correlation(s), tests of significance, all canonical correlations 367—369
Canonical correlation(s), tests of significance, all canonical correlations and test of independence 367—368
Canonical correlation(s), tests of significance, all canonical correlations and test of overall regression 367—368 375
Canonical correlation(s), tests of significance, all canonical correlations, comparison of tests 368—369
Canonical correlation(s), tests of significance, subset of canonical correlations 369—371
Canonical correlation(s), tests of significance, subset selection 376
Canonical correlation(s), tests of significance, test of a subset in regression 375—376
Canonical variates: and regression 374—376
Canonical variates: correlations among 364
Canonical variates: definition of 363
Canonical variates: interpretation 371—374
Canonical variates: interpretation by correlations (structure coefficients) 373
Canonical variates: interpretation by rotation 373
| Canonical variates: interpretation by standardized coefficients 371—373
Canonical variates: redundancy analysis 373—374
Canonical variates: standardized coefficients 365 371—373
categorical variables see Dummy variables
Central Limit Theorem (Multivariate) 91
Characteristic form: of -statistic 118 123
Characteristic form: of t-statistic 117 122
Characteristic roots see Eigenvalues
Chemical data 340
Chi-square distribution 86 91—92 114
Cholesky decomposition 25—26
City crime data 456
Classification analysis (allocation) 299—321
Classification analysis (allocation), assigning a sampling unit to a group 299
Classification analysis (allocation), asymptotic optimality 302
Classification analysis (allocation), correct classification rates 307—309
Classification analysis (allocation), error rates 307—313. See also Error rates
Classification analysis (allocation), error rates as a stopping rule 311—313
Classification analysis (allocation), error rates, estimates of 307—313
Classification analysis (allocation), k-nearest neighbor rule 318—319
Classification analysis (allocation), nonparametric classification procedures 302 314—320
Classification analysis (allocation), nonparametric classification procedures, density estimators (kernel) 315—317
Classification analysis (allocation), nonparametric classification procedures, multinomial data (categorical variables) 314—315
Classification analysis (allocation), nonparametric classification procedures, multinomial data (categorical variables), dummy variables 315
Classification analysis (allocation), nonparametric classification procedures, nearest neighbor rule 318—320
Classification analysis (allocation), nonparametric classification procedures, nearest neighbor rule, k-nearest neighbor rule 318—319
Classification analysis (allocation), several groups 304—307
Classification analysis (allocation), several groups, linear classification functions 304—306
Classification analysis (allocation), several groups, linear classification functions, equal covariance matrices 304—305
Classification analysis (allocation), several groups, optimal classification rule (Welch) 305
Classification analysis (allocation), several groups, prior probabilities 305—307
Classification analysis (allocation), several groups, quadratic classification functions 306—307
Classification analysis (allocation), several groups, quadratic classification functions, unequal covariance matrices 306
Classification analysis (allocation), subset selection 311—313
Classification analysis (allocation), subset selection, stepwise discriminant analysis 311—313
Classification analysis (allocation), subset selection, stepwise discriminant analysis, error rate as a stopping rule 311—313
Classification analysis (allocation), two groups 300—303
Classification analysis (allocation), two groups, Fisher's classification function 300—302
Classification analysis (allocation), two groups, linear classification function 301—302
Classification analysis (allocation), two groups, optimal classification rule (Welch) 302
Classification analysis (allocation), two groups, prior probabilities 302
Cluster analysis 451—503
Cluster analysis and classification 451
Cluster analysis, average linkage method 463
Cluster analysis, centroid method 463—465
Cluster analysis, choosing the number of clusters 494—496
Cluster analysis, clustering observations 451—496
Cluster analysis, clustering variables 451 497—499
Cluster analysis, comparison of methods 478—479
Cluster analysis, complete linkage method 459—462
Cluster analysis, definition 451
Cluster analysis, dendrogram 456
Cluster analysis, dendrogram, crossover 471
Cluster analysis, dendrogram, examples of 458—459 461—462 464—465 467 469 472—473 476—477
Cluster analysis, dendrogram, inversion 471
Cluster analysis, dendrogram, reversal 471
Cluster analysis, dissimilarity 452
Cluster analysis, distance 451—454
Cluster analysis, distance, distance matrix 453
Cluster analysis, distance, Euclidean distance 452
Cluster analysis, distance, Minkowski metric 453
Cluster analysis, distance, profile of observation vector: level 454
Cluster analysis, distance, profile of observation vector: shape 454
Cluster analysis, distance, profile of observation vector: variation 454
Cluster analysis, distance, scale of measurement 453—454
Cluster analysis, distance, statistical distance 452—453
Cluster analysis, farthest neighbor method see Complete linkage method
Cluster analysis, flexible beta method 468—471
Cluster analysis, hierarchical clustering 452 455—481
Cluster analysis, hierarchical clustering, agglomerative method 455—479
Cluster analysis, hierarchical clustering, agglomerative method, average linkage 463
Cluster analysis, hierarchical clustering, agglomerative method, centroid 463—465
Cluster analysis, hierarchical clustering, agglomerative method, centroid, mean vectors 463
Cluster analysis, hierarchical clustering, agglomerative method, complete linkage 459—462
Cluster analysis, hierarchical clustering, agglomerative method, flexible beta 468—471
Cluster analysis, hierarchical clustering, agglomerative method, median 466
Cluster analysis, hierarchical clustering, agglomerative method, single linkage 456—459
Cluster analysis, hierarchical clustering, agglomerative method, Ward's method 466—468
Cluster analysis, hierarchical clustering, comparison of methods 478—479
Cluster analysis, hierarchical clustering, dendrogram 456
Cluster analysis, hierarchical clustering, divisive method 455 479—481
Cluster analysis, hierarchical clustering, divisive method, monothetic 479
Cluster analysis, hierarchical clustering, divisive method, polythetic 479—480
Cluster analysis, hierarchical clustering, properties 471–479
Cluster analysis, hierarchical clustering, properties, chaining 474
Cluster analysis, hierarchical clustering, properties, contraction 474
Cluster analysis, hierarchical clustering, properties, dilation 474
Cluster analysis, hierarchical clustering, properties, monotonicity 471
Cluster analysis, hierarchical clustering, properties, outliers 478—479
Cluster analysis, hierarchical clustering, properties, space contracting 474
Cluster analysis, hierarchical clustering, properties, space dilating 474
Cluster analysis, hierarchical clustering, properties, ultrametric 471
Cluster analysis, incremental sum of squares method see Ward's method
Cluster analysis, median method 466
Cluster analysis, nearest neighbor method see Single linkage method
Cluster analysis, nonhierarchical methods 481—494
Cluster analysis, nonhierarchical methods, density estimation 493
Cluster analysis, nonhierarchical methods, density estimation, dense point 493
Cluster analysis, nonhierarchical methods, density estimation, modes 493
Cluster analysis, nonhierarchical methods, mixtures of distributions 490—492
Cluster analysis, nonhierarchical methods, partitioning 481—490
Cluster analysis, nonhierarchical methods, partitioning, k-means 482—488
Cluster analysis, nonhierarchical methods, partitioning, k-means, seeds 482—487
Cluster analysis, nonhierarchical methods, partitioning, methods based on E and H 488—490
Cluster analysis, number of clusters: choosing the number of clusters 494—496
Cluster analysis, number of clusters: choosing the number of clusters, cutting the dendrogram 494–495
Cluster analysis, number of clusters: choosing the number of clusters, methods based on E and H 495—496
Cluster analysis, number of clusters: total possible number 455
Cluster analysis, optimization methods see Nonhierarchical methods partitioning
Cluster analysis, partitioning 452 481—490
Cluster analysis, plotting of clusters: discriminant functions 486—488 494
Cluster analysis, plotting of clusters: principal components 451 484
Cluster analysis, plotting of clusters: projection pursuit 451
Cluster analysis, profile of observation vector: level 454
Cluster analysis, profile of observation vector: shape 454
Cluster analysis, profile of observation vector: variation 454
Cluster analysis, similarity 451—455
Cluster analysis, single linkage method 456—459
Cluster analysis, tree diagram see dendrogram
Cluster analysis, validity of a cluster solution 496
Cluster analysis, validity of a cluster solution, cross validation 496
Cluster analysis, validity of a cluster solution, hypothesis test 496
Cluster analysis, variables and factor analysis 498
Cluster analysis, variables, clustering of 451 497—499
Cluster analysis, variables, correlations 497
Cluster analysis, Ward's method 466—468
Coated pipe data 135
Coefficient of determination see
Commensurate variables see Variables commensurate
Communality see Factor analysis
Confidence interval (reference) 119 127
Contingency table: graphical analysis of see Correspondence analysis
Contingency table: higher-way table 526 528—529
Contingency table: two-way table 514—516 519 521
Contour plots 84—85
Contrast(s): contrast matrices in growth curves 222—225 227—230
Contrast(s): contrast matrices in repeated measures 206 208—221
Contrast(s): one-sample profile analysis 141—142
Contrast(s): one-way ANOVA 178—180
Contrast(s): one-way MANOVA 180—183
Contrast(s): orthonormal 206
Contrast(s): two-way ANOVA 188
Contrast(s): two-way MANOVA 190—191
Cork data 239
Correct classification rate 307—309
Correlation matrix: and covariance matrix 61
Correlation matrix: factor analysis on 418—419
Correlation matrix: partitioned 365
Correlation matrix: population correlation matrix 61
Correlation matrix: principal components from 383—384 393—397
|
|
|
Ðåêëàìà |
|
|
|