| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Rencher A.C. — Methods of multivariate analysis |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | |  (squared multiple correlation)      332—333 337 349 355 361—362 365 375—376 422—423 
  -statistic: additional information, test for      136—139 
  -statistic: and F-distribution      119 124 137—138 
  -statistic: and profile analysis      139—148 
  -statistic: and profile analysis, one sample      139—141 
  -statistic: and profile analysis, two samples      141—148 
  -statistic: assumptions for      122 
  -statistic: characteristic form      118 123 
  -statistic: chi-square approximation for      120 
  -statistic: computation of      130—132 
  -statistic: computation of, by MANOVA      130 
  -statistic: computation of, y regression      130—132 
  -statistic: for a subvector      136—139 
  -statistic: full and reduced model test      137 
  -statistic: likelihood ratio test      126 
  -statistic: matched pairs      134—136 
  -statistic: one-sample      117—121 
  -statistic: paired observations      134—136 
  -statistic: properties of      119—120 123—124 
  -statistic: table of critical values for  558—561 
  -statistic: two-sample      122—126 Additional information, test for      136—139 231—233
 Air pollution data      502
 Airline distance data      508
 Algebra, matrix      see Matrix algebra
 Analysis of variance: multivariate (MANOVA): additional information, test for      231—233
 Analysis of variance: multivariate (MANOVA): and canonical correlation      376—377
 Analysis of variance: multivariate (MANOVA): association, measures of      173—176
 Analysis of variance: multivariate (MANOVA): assumptions, checking on      198—199
 Analysis of variance: multivariate (MANOVA): contrasts      180—183
 Analysis of variance: multivariate (MANOVA): discriminant function      165 184—185 191
 Analysis of variance: multivariate (MANOVA): growth curves      221—230. See also Growth curves; Repeated measures designs
 Analysis of variance: multivariate (MANOVA): H and E matrices      160—161
 Analysis of variance: multivariate (MANOVA): higher order models      195—196
 Analysis of variance: multivariate (MANOVA): individual variables, discriminant function      184—185 191
 Analysis of variance: multivariate (MANOVA): individual variables, experimentwise error rate      183—185
 Analysis of variance: multivariate (MANOVA): individual variables, protected tests      184
 Analysis of variance: multivariate (MANOVA): individual variables, tests on      163—164 183—186
 Analysis of variance: multivariate (MANOVA): Lawley — Hotelling test      167
 Analysis of variance: multivariate (MANOVA): Lawley — Hotelling test, table of critical values      524—528
 Analysis of variance: multivariate (MANOVA): likelihood ratio test      164
 Analysis of variance: multivariate (MANOVA): mixed models      196—198
 Analysis of variance: multivariate (MANOVA): mixed models, expected mean squares      196—197
 Analysis of variance: multivariate (MANOVA): multivariate association, measures of      173—176
 Analysis of variance: multivariate (MANOVA): one-way      158—161
 Analysis of variance: multivariate (MANOVA): one-way contrasts      180—183
 Analysis of variance: multivariate (MANOVA): one-way contrasts, orthogonal      181
 Analysis of variance: multivariate (MANOVA): one-way model      159
 Analysis of variance: multivariate (MANOVA): one-way, unbalanced      168
 Analysis of variance: multivariate (MANOVA): Pillai's test      166
 Analysis of variance: multivariate (MANOVA): profile analysis      199—201
 Analysis of variance: multivariate (MANOVA): repeated measures      204—221. See also Repeated measures designs; Growth curves
 Analysis of variance: multivariate (MANOVA): Roy's test (union-intersection)      164—166
 Analysis of variance: multivariate (MANOVA): Roy's test (union-intersection), table of critical values      517—520
 Analysis of variance: multivariate (MANOVA): stepwise discriminant analysis      233
 Analysis of variance: multivariate (MANOVA): stepwise selection of variables      233
 Analysis of variance: multivariate (MANOVA): test for additional information      231—233
 Analysis of variance: multivariate (MANOVA): test on a subvector      231—233
 Analysis of variance: multivariate (MANOVA): test statistics      161—173
 Analysis of variance: multivariate (MANOVA): test statistics and
  169 Analysis of variance: multivariate (MANOVA): test statistics eigenvalues      168
 Analysis of variance: multivariate (MANOVA): test statistics, comparison of      169—170 176—178
 Analysis of variance: multivariate (MANOVA): test statistics, power of      176—178
 Analysis of variance: multivariate (MANOVA): tests on individual variables      163—174 183—186 191
 Analysis of variance: multivariate (MANOVA): tests on individual variables, discriminant function      165 184—185 191
 Analysis of variance: multivariate (MANOVA): tests on individual variables, experimentwise error rate      183—185
 Analysis of variance: multivariate (MANOVA): tests on individual variables, protected tests      184
 Analysis of variance: multivariate (MANOVA): two-way      188—195
 Analysis of variance: multivariate (MANOVA): two-way contrasts      190—191
 Analysis of variance: multivariate (MANOVA): two-way discriminant function      191
 Analysis of variance: multivariate (MANOVA): two-way interactions      189—190
 Analysis of variance: multivariate (MANOVA): two-way main effects      189—190
 Analysis of variance: multivariate (MANOVA): two-way model      189
 Analysis of variance: multivariate (MANOVA): two-way test statistics      190
 Analysis of variance: multivariate (MANOVA): two-way tests on individual variables      191
 Analysis of variance: multivariate (MANOVA): unbalanced one-way      168
 Analysis of variance: multivariate (MANOVA): union-intersection test      164
 Analysis of variance: multivariate (MANOVA): Wilks'
  (likelihood ratio) test      161—164 Analysis of variance: multivariate (MANOVA): Wilks'
  (likelihood ratio) test, chi-square approximation      162 Analysis of variance: multivariate (MANOVA): Wilks'
  (likelihood ratio) test, F approximation      162 Analysis of variance: multivariate (MANOVA): Wilks'
  (likelihood ratio) test, partial  -statistic      232 Analysis of variance: multivariate (MANOVA): Wilks'
  (likelihood ratio) test, properties of      162—164 Analysis of variance: multivariate (MANOVA): Wilks'
  (likelihood ratio) test, table of critical values      501—516 Analysis of variance: multivariate (MANOVA): Wilks'
  (likelihood ratio) test, transformations to exact F      162—163 Analysis of variance: univariate (ANOVA): one-way      156—158
 Analysis of variance: univariate (ANOVA): one-way contrasts      178—180
 Analysis of variance: univariate (ANOVA): one-way contrasts, orthogonal      179—180
 Analysis of variance: univariate (ANOVA): one-way SSH, SSE, F-statistic      158
 Analysis of variance: univariate (ANOVA): two-way      186—188
 Analysis of variance: univariate (ANOVA): two-way contrasts      188
 Analysis of variance: univariate (ANOVA): two-way F-test      188
 Analysis of variance: univariate (ANOVA): two-way interaction      187
 Analysis of variance: univariate (ANOVA): two-way main effects      187—188
 Analysis of variance: univariate (ANOVA): two-way model      186
 anova      see Analysis of variance univariate
 Association, measures of      173—176 349—351
 Athletic record data      480
 Bar steel data      192
 Beetles data      150
 Bilinear form      19—20
 Biplots      531—539
 Biplots, coordinates of points      533—534
 Biplots, coordinates of points, correlation      534
 Biplots, coordinates of points, cosine      534 537
 Biplots, points for observations      531—534
 Biplots, points for variables      531—534
 Biplots, principal component approach      531—532 535
 Biplots, singular value decomposition      532—533 535
 Birth and death data      543
 Bivariate normal distribution      46 84 88—89 133
 Blood data      237
 Blood pressure data      245
 Bonferroni critical values      127
 Bonferroni critical values, table      562—565
 Box's M-test      257—259
 Box's M-test, table of exact critical values      588—589
 Bronchus data      154
 Burt matrix      526—529
 Byssinosis data      545—546
 Calcium dat      56
 Calculator speed data      210
 Canonical correlation(s)      174 260 361—378
 Canonical correlation(s) and discriminant analysis      376—378
 Canonical correlation(s) and eigenvalues      362—363 377—378
 Canonical correlation(s) and MANOVA      376—378
 Canonical correlation(s) and MANOVA, dummy variables      376—377
 Canonical correlation(s) and measures of association      362 373—374
 Canonical correlation(s) and multiple correlation      361—362 366 376
 Canonical correlation(s) and regression      368—369 374—376
 Canonical correlation(s) with grouping variables      174
 Canonical correlation(s) with test for independence of two subvectors      260 367—368
 Canonical correlation(s), canonical variates      see Canonical variates
 Canonical correlation(s), definition of      362—364
 Canonical correlation(s), properties of      366—367
 Canonical correlation(s), redundancy analysis      373—374
 Canonical correlation(s), subset selection      376
 Canonical correlation(s), tests of significance      367—371
 Canonical correlation(s), tests of significance, all canonical correlations      367—369
 Canonical correlation(s), tests of significance, all canonical correlations and test of independence      367—368
 Canonical correlation(s), tests of significance, all canonical correlations and test of overall regression      367—368 375
 Canonical correlation(s), tests of significance, all canonical correlations, comparison of tests      368—369
 Canonical correlation(s), tests of significance, subset of canonical correlations      369—371
 Canonical correlation(s), tests of significance, subset selection      376
 Canonical correlation(s), tests of significance, test of a subset in regression      375—376
 Canonical variates: and regression      374—376
 Canonical variates: correlations among      364
 Canonical variates: definition of      363
 Canonical variates: interpretation      371—374
 Canonical variates: interpretation by correlations (structure coefficients)      373
 Canonical variates: interpretation by rotation      373
 
 | Canonical variates: interpretation by standardized coefficients      371—373 Canonical variates: redundancy analysis      373—374
 Canonical variates: standardized coefficients      365 371—373
 categorical variables      see Dummy variables
 Central Limit Theorem (Multivariate)      91
 Characteristic form: of
  -statistic      118 123 Characteristic form: of t-statistic      117 122
 Characteristic roots      see Eigenvalues
 Chemical data      340
 Chi-square distribution      86 91—92 114
 Cholesky decomposition      25—26
 City crime data      456
 Classification analysis (allocation)      299—321
 Classification analysis (allocation), assigning a sampling unit to a group      299
 Classification analysis (allocation), asymptotic optimality      302
 Classification analysis (allocation), correct classification rates      307—309
 Classification analysis (allocation), error rates      307—313. See also Error rates
 Classification analysis (allocation), error rates as a stopping rule      311—313
 Classification analysis (allocation), error rates, estimates of      307—313
 Classification analysis (allocation), k-nearest neighbor rule      318—319
 Classification analysis (allocation), nonparametric classification procedures      302 314—320
 Classification analysis (allocation), nonparametric classification procedures, density estimators (kernel)      315—317
 Classification analysis (allocation), nonparametric classification procedures, multinomial data (categorical variables)      314—315
 Classification analysis (allocation), nonparametric classification procedures, multinomial data (categorical variables), dummy variables      315
 Classification analysis (allocation), nonparametric classification procedures, nearest neighbor rule      318—320
 Classification analysis (allocation), nonparametric classification procedures, nearest neighbor rule, k-nearest neighbor rule      318—319
 Classification analysis (allocation), several groups      304—307
 Classification analysis (allocation), several groups, linear classification functions      304—306
 Classification analysis (allocation), several groups, linear classification functions, equal covariance matrices      304—305
 Classification analysis (allocation), several groups, optimal classification rule (Welch)      305
 Classification analysis (allocation), several groups, prior probabilities      305—307
 Classification analysis (allocation), several groups, quadratic classification functions      306—307
 Classification analysis (allocation), several groups, quadratic classification functions, unequal covariance matrices      306
 Classification analysis (allocation), subset selection      311—313
 Classification analysis (allocation), subset selection, stepwise discriminant analysis      311—313
 Classification analysis (allocation), subset selection, stepwise discriminant analysis, error rate as a stopping rule      311—313
 Classification analysis (allocation), two groups      300—303
 Classification analysis (allocation), two groups, Fisher's classification function      300—302
 Classification analysis (allocation), two groups, linear classification function      301—302
 Classification analysis (allocation), two groups, optimal classification rule (Welch)      302
 Classification analysis (allocation), two groups, prior probabilities      302
 Cluster analysis      451—503
 Cluster analysis and classification      451
 Cluster analysis, average linkage method      463
 Cluster analysis, centroid method      463—465
 Cluster analysis, choosing the number of clusters      494—496
 Cluster analysis, clustering observations      451—496
 Cluster analysis, clustering variables      451 497—499
 Cluster analysis, comparison of methods      478—479
 Cluster analysis, complete linkage method      459—462
 Cluster analysis, definition      451
 Cluster analysis, dendrogram      456
 Cluster analysis, dendrogram, crossover      471
 Cluster analysis, dendrogram, examples of      458—459 461—462 464—465 467 469 472—473 476—477
 Cluster analysis, dendrogram, inversion      471
 Cluster analysis, dendrogram, reversal      471
 Cluster analysis, dissimilarity      452
 Cluster analysis, distance      451—454
 Cluster analysis, distance, distance matrix      453
 Cluster analysis, distance, Euclidean distance      452
 Cluster analysis, distance, Minkowski metric      453
 Cluster analysis, distance, profile of observation vector: level      454
 Cluster analysis, distance, profile of observation vector: shape      454
 Cluster analysis, distance, profile of observation vector: variation      454
 Cluster analysis, distance, scale of measurement      453—454
 Cluster analysis, distance, statistical distance      452—453
 Cluster analysis, farthest neighbor method      see Complete linkage method
 Cluster analysis, flexible beta method      468—471
 Cluster analysis, hierarchical clustering      452 455—481
 Cluster analysis, hierarchical clustering, agglomerative method      455—479
 Cluster analysis, hierarchical clustering, agglomerative method, average linkage      463
 Cluster analysis, hierarchical clustering, agglomerative method, centroid      463—465
 Cluster analysis, hierarchical clustering, agglomerative method, centroid, mean vectors      463
 Cluster analysis, hierarchical clustering, agglomerative method, complete linkage      459—462
 Cluster analysis, hierarchical clustering, agglomerative method, flexible beta      468—471
 Cluster analysis, hierarchical clustering, agglomerative method, median      466
 Cluster analysis, hierarchical clustering, agglomerative method, single linkage      456—459
 Cluster analysis, hierarchical clustering, agglomerative method, Ward's method      466—468
 Cluster analysis, hierarchical clustering, comparison of methods      478—479
 Cluster analysis, hierarchical clustering, dendrogram      456
 Cluster analysis, hierarchical clustering, divisive method      455 479—481
 Cluster analysis, hierarchical clustering, divisive method, monothetic      479
 Cluster analysis, hierarchical clustering, divisive method, polythetic      479—480
 Cluster analysis, hierarchical clustering, properties      471–479
 Cluster analysis, hierarchical clustering, properties, chaining      474
 Cluster analysis, hierarchical clustering, properties, contraction      474
 Cluster analysis, hierarchical clustering, properties, dilation      474
 Cluster analysis, hierarchical clustering, properties, monotonicity      471
 Cluster analysis, hierarchical clustering, properties, outliers      478—479
 Cluster analysis, hierarchical clustering, properties, space contracting      474
 Cluster analysis, hierarchical clustering, properties, space dilating      474
 Cluster analysis, hierarchical clustering, properties, ultrametric      471
 Cluster analysis, incremental sum of squares method      see Ward's method
 Cluster analysis, median method      466
 Cluster analysis, nearest neighbor method      see Single linkage method
 Cluster analysis, nonhierarchical methods      481—494
 Cluster analysis, nonhierarchical methods, density estimation      493
 Cluster analysis, nonhierarchical methods, density estimation, dense point      493
 Cluster analysis, nonhierarchical methods, density estimation, modes      493
 Cluster analysis, nonhierarchical methods, mixtures of distributions      490—492
 Cluster analysis, nonhierarchical methods, partitioning      481—490
 Cluster analysis, nonhierarchical methods, partitioning, k-means      482—488
 Cluster analysis, nonhierarchical methods, partitioning, k-means, seeds      482—487
 Cluster analysis, nonhierarchical methods, partitioning, methods based on E and H      488—490
 Cluster analysis, number of clusters: choosing the number of clusters      494—496
 Cluster analysis, number of clusters: choosing the number of clusters, cutting the dendrogram      494–495
 Cluster analysis, number of clusters: choosing the number of clusters, methods based on E and H      495—496
 Cluster analysis, number of clusters: total possible number      455
 Cluster analysis, optimization methods      see Nonhierarchical methods partitioning
 Cluster analysis, partitioning      452 481—490
 Cluster analysis, plotting of clusters: discriminant functions      486—488 494
 Cluster analysis, plotting of clusters: principal components      451 484
 Cluster analysis, plotting of clusters: projection pursuit      451
 Cluster analysis, profile of observation vector: level      454
 Cluster analysis, profile of observation vector: shape      454
 Cluster analysis, profile of observation vector: variation      454
 Cluster analysis, similarity      451—455
 Cluster analysis, single linkage method      456—459
 Cluster analysis, tree diagram      see dendrogram
 Cluster analysis, validity of a cluster solution      496
 Cluster analysis, validity of a cluster solution, cross validation      496
 Cluster analysis, validity of a cluster solution, hypothesis test      496
 Cluster analysis, variables and factor analysis      498
 Cluster analysis, variables, clustering of      451 497—499
 Cluster analysis, variables, correlations      497
 Cluster analysis, Ward's method      466—468
 Coated pipe data      135
 Coefficient of determination      see
   Commensurate variables      see Variables commensurate
 Communality      see Factor analysis
 Confidence interval (reference)      119 127
 Contingency table: graphical analysis of      see Correspondence analysis
 Contingency table: higher-way table      526 528—529
 Contingency table: two-way table      514—516 519 521
 Contour plots      84—85
 Contrast(s): contrast matrices in growth curves      222—225 227—230
 Contrast(s): contrast matrices in repeated measures      206 208—221
 Contrast(s): one-sample profile analysis      141—142
 Contrast(s): one-way ANOVA      178—180
 Contrast(s): one-way MANOVA      180—183
 Contrast(s): orthonormal      206
 Contrast(s): two-way ANOVA      188
 Contrast(s): two-way MANOVA      190—191
 Cork data      239
 Correct classification rate      307—309
 Correlation matrix: and covariance matrix      61
 Correlation matrix: factor analysis on      418—419
 Correlation matrix: partitioned      365
 Correlation matrix: population correlation matrix      61
 Correlation matrix: principal components from      383—384 393—397
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |