Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Harris R.J. — A primer of multivariate statistic
Harris R.J. — A primer of multivariate statistic



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: A primer of multivariate statistic

Àâòîð: Harris R.J.

Àííîòàöèÿ:

As he was looking over materials for his multivariate course, Harris (U. of New Mexico) realized that the course had outstripped the current edition of his own textbook. He decided to revise it rather than use someone else's because he finds them veering too much toward math avoidance, and not paying enough attention to emergent variables or to structural equation modeling. He has updated the 1997 second edition with new coverage of structural equation modeling and various aspects of it, new demonstrations of the properties of the various techniques, and computer applications integrated into each chapter rather than appended.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: third edition

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 609

Äîáàâëåíà â êàòàëîã: 03.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Least squares (LSQ) method, relation to unweighted means      113—114 545
Lee, J.C.      239
Levels hypothesis      173—175 177
Leventhal, L.      4
Levi, M.      277
Lewis, C.A.      114
Li, C.C.      284
Likelihood-ratio tests      36 231 267 279 218 317
Likelihood-ratio tests, distance measure and      183—184
Likelihood-ratio tests, likelihood function      184
Likelihood-ratio tests, null hypothesis and      279
Likert scaling      113 143
Lindquist, E.F.      450
Linear combinations, contrasts on      213 222t
Linear combinations, eigenvalues and      See Eigenvalues
Linear combinations, eigenvectors and      See Eigenvectors
Linear combinations, for components      318—319 320 326—329 348
Linear combinations, linear dependence and      497
Linear combinations, matrix algebra      See Matrix algebra
Linear combinations, normally distributed      450
Linear combinations, of canonical variates      55
Linear combinations, of predictors      551
Linear combinations, of variables      4 13—14 17 24—25 27—28 32 40—42 45- 53—54 55 60 62 69 70 72 73 80 81 84 85—87 90—92 102 106 122 146 327 480 485.
Linear combinations, optimal      179 506
Linear combinations, outcome variables and      165—170
Linear combinations, PCA and      40 348 562—562
Linear combinations, variances of      320 349 562
Linear equity formula      164 129
Linn, R.T.      86 96 184 494
LISREL package      365 408—409
Little, T.D.      480
LMVs      See Variables level-membership
Loadings, as regression coefficients for orthogonal factors      416
Loadings, bias in PCA-based estimates of      420—421
Loadings, eigenvectors and      405
Loadings, factor analysis and      404—406 420—421
Loadings, interpretation      See Interpretation loadings-based
Loadings, kurtosis of      362
Loadings, normalized      363 364
Loadings, on canonical variate      289—293
Loadings, on discriminant function      346
Loadings, on discriminant function proportion to F ratio      345 345t
Loadings, on regression variate      109
Loadings, restrictions on in CFA      407
Loadings, rotation of      564—565
Locus of Control scale (LGC)      86 494
Loehlin, J.C.      479
Logarithms, of scores      61
Lohnes, P.R.      79 109 235
Lord, F.M.      30n 448
Love, W.      293—294
LSQ      See Least squares method
MacDonald, G.E.      37—38 277
Mahalonobis' $D^2$ statistic      184 231
Mahalonobis, P.C.      184
Maki, J.E.      25
Manova      See Multivariate analysis of variance
Marcoulides, G.A.      480
Marijuana use      273—277 275t 276t
Markos, V.H.      236 278
Marks, M.R.      79—80
Martin, J.K.      408
Masculinity scale      345 448
Mathematics, in behavioral sciences      5
Mathematics, mathematization vs. cosmetic application      5
Mathworks, Inc      100
MATLAB program      87 100—101 162—163 162 181 196 198 285 286 297—299 315 325 350—351 421 532
MATLAB program, matrix commands      198
Matrix algebra      22 28 32 53 70—73 81 84 91 105 461 479.
Matrix algebra, A matrix      160 170
Matrix algebra, calculus and      502—503
Matrix algebra, characteristic roots      See Eigenvalues
Matrix algebra, cofactor method      496 498
Matrix algebra, conformability for multiplication      490
Matrix algebra, covariance matrix      71 105—162—163 84t 77—78 324—325 540
Matrix algebra, cross-products matrix, x’x      81—84 84t 105 111 115 122 139—140 160 170
Matrix algebra, determinant of      499 547
Matrix algebra, diagonal matrices      141 149 240—243 325 329 337 347 384 394 509
Matrix algebra, differentiation procedures      219 502—503 552
Matrix algebra, division and      72 493
Matrix algebra, E matrix      242
Matrix algebra, eigenvalues      See Eigenvalues
Matrix algebra, eigenvectors      See Eigenvectors
Matrix algebra, equations in      232 493—496
Matrix algebra, equicovariance matrix      324—325
Matrix algebra, error matrix      See E matrix
Matrix algebra, Factor pattern and      424
Matrix algebra, formulae      53
Matrix algebra, Identity matrix      72
Matrix algebra, inversion      See Inversion of
Matrix algebra, linear combinations of      164 489—492
Matrix algebra, maxima in      541
Matrix algebra, minors      498 501
Matrix algebra, multiplication of      489—492
Matrix algebra, nonsymmetric      490
Matrix algebra, notation for      491—492
Matrix algebra, operations in      16
Matrix algebra, operations on computer      496—501
Matrix algebra, orthogonality      320 324—325
Matrix algebra, partitioned matrices      160 269 503—506 543 547
Matrix algebra, products      489—492
Matrix algebra, programs for      461
Matrix algebra, rank      397—400 501—502
Matrix algebra, regression equation and      506
Matrix algebra, residual matrix      510
Matrix algebra, round-off error in      499
Matrix algebra, row operations      496—501
Matrix algebra, singular and near-singular matrices      163 170 337
Matrix algebra, square matrices      494
Matrix algebra, submatrices      501
Matrix algebra, symmetric matrices      205 220 249 488 499
Matrix algebra, trace      159
Matrix algebra, transpose      499
Matrix algebra, triangular forms      496—501 505
Matrix algebra, utility of      56—57 479
MATRIX DATA command, SPSS      89—90
Maximization      See Optimization
Maximum correlation criterion      69—71
Maximum-likelihood method      43 355
Maximum-likelihood method, disadvantages of      407 427
Maximum-likelihood method, factor analysis and      355 400 407—410
Maximum-likelihood method, number of factors and      406
Maximum-likelihood method, statistics using      361
Maximum-likelihood method, tests in      280
Maximum-R criterion      69—71
Maxwell, S.E.      32 136
McArdle, J.J.      480
McCall, R.B.      190
McClintock, C.G.      25
McDonald, R.P.      408 411 414 419 437
McFatter, R.M.      136
McGuire, W.J.      3 243
McNemar's test of correlated proportions      277
Mean vectors, tests on      155—209
Means model      111
Means, weighted vs. unweighted      116—117 117t 120
Measurement, outliers      78 121—122
Measurement, scales of, and “permissible” analyses      444—350
Measurement, Stevens's classification      447—449
Measurement, units of      175
Measurement, zero error in fixed variables      62
Melgoza, B.      33
Memory      19—20
Mendoza, J.L.      190 235 278
Meredith, W.      280 285 287—288 480
Messick, W.      40 68
Mgl hypothesis      See Optimization
Millsap, R.E.      327 370
Minimally important difference significant (MIDS) criterion for sample size      8—9
Minimum residuals method (minres)      44 407—408
Minimum residuals method (minres), disadvantages of      407
Minnesota Multi-Phasic Inventory (MMPI)      294 308 317
Minres      See Minimum residuals method
Misclassifications      182—183
Mixed model      76
MMPI      See Minnesota Multi-Phasic Inventory
Models, explanation and      348 360
Models, mathematical      5
Models, modeling effect      34
Models, multiplicity of      318
Models, nested      439—442
Models, testing of      5 6.
Moler, C.      87 100 285 481 532
Monte Carlo studies      79 190 230 234 236 277—278 295—297 304 347—348 352 452
Monte Carlo studies, data for      451
Monte Carlo studies, “loaded”      80
Morris, J.D.      122
Morrison, D.F.      76 221 233 317 352 459—460 462 479 509
Mosteller, F.      23 76
Motives, and behavior      25
MRA      See Multiple regression analysis
Mudholkar, G.S.      239
Mulaik, S.A.      5 44 136 394 406—408 410—411 419—420 437 479
Muller, K.E.      223
Multiple comparison      11 157 213—218
Multiple correlation      16t 31—34
Multiple discriminant analysis      229—231
Multiple profile analysis      224—230
Multiple regression analysis (MRA)      4 12n 15 16t 17 31—34 37 39 41 43 55
Multiple regression analysis (MRA), (non)arbitrariness of      292—293
Multiple regression analysis (MRA), adding predictors to      185
Multiple regression analysis (MRA), canonical analysis and      268 277
Multiple regression analysis (MRA), equation      32
Multiple regression analysis (MRA), formulae      84t
Multiple regression analysis (MRA), Hotelling's $T^2$ and      184—185 549—551
Multiple regression analysis (MRA), matrix formulae for      17 70—72
Multiple regression analysis (MRA), multivariate      290
Multiple regression analysis (MRA), on group-membership variables      544
Multiple regression analysis (MRA), residual scores      39
Multiple regression analysis (MRA), scalar formula for      536—538
Multiple regression analysis (MRA), stepwise      95—96
Multiple regression analysis (MRA), suppression effects      76 134—136
Multiple root tests      231—240. See also Hotelling's $T^2$ trace
Multiple root tests, gcr tests and      231 234 236—240
Multiple root tests, Manova and      231—240
Multiple root tests, robustness of      25 238—240
Multiple-group method      43
Multipliers      485—486
Multivariate analysis of variance (Manova)      210—267
Multivariate analysis of variance (Manova), BMDX69 program      249—250 393
Multivariate analysis of variance (Manova), Bonferroni-adjusted      229
Multivariate analysis of variance (Manova), canned programs for      232 246 250 256 257—262
Multivariate analysis of variance (Manova), canonical analysis and      557—559
Multivariate analysis of variance (Manova), canonical R, relation to      55
Multivariate analysis of variance (Manova), computational saving in, via PC A      337
Multivariate analysis of variance (Manova), discriminant analysis and      229—231 262—264 255
Multivariate analysis of variance (Manova), discriminant functions in      25—26
Multivariate analysis of variance (Manova), factorial      242 254 256 259—260 263 557—559
Multivariate analysis of variance (Manova), Fratio and      55 552—553
Multivariate analysis of variance (Manova), gcr significance      228
Multivariate analysis of variance (Manova), generation from univariate Anova      245—247
Multivariate analysis of variance (Manova), higher order      16t 22—23 245—252 510—512
Multivariate analysis of variance (Manova), Hotelling's $T^2$, reduction to      220
Multivariate analysis of variance (Manova), in repeated-measures design      252—257
Multivariate analysis of variance (Manova), loadings and      346 412
Multivariate analysis of variance (Manova), maximization algorithm      243
Multivariate analysis of variance (Manova), multiple-root tests      231—240
Multivariate analysis of variance (Manova), null hypothesis and      220 224 248
Multivariate analysis of variance (Manova), obesity main effect and      28 345—347 345t 346t
Multivariate analysis of variance (Manova), one-way      24—26 218—224 316—317 557—559
Multivariate analysis of variance (Manova), outcome vectors      24 25 27 39 210 220 252 262
Multivariate analysis of variance (Manova), parallelism tests and      228 252
Multivariate analysis of variance (Manova), partitioned-lambda (Partitioned U)      234—237 279—280
Multivariate analysis of variance (Manova), principal components and      344—348
Multivariate analysis of variance (Manova), robustness of      451
Multivariate analysis of variance (Manova), SAS and      246 250 260—262
Multivariate analysis of variance (Manova), simple cases of      240—243
Multivariate analysis of variance (Manova), SPSS program      232 236 246 250 256—260 265 289 297 301 304—307 459 461 464 557
Multivariate analysis of variance (Manova), tests in      25 220 235 267 279
Multivariate analysis of variance (Manova), unbalanced      106—108 256 460—464
Multivariate analysis of variance (Manova), union-intersection principle      239
Multivariate analysis of variance (Manova), Wilks's lambda criteria      231—232 234—237
Multivariate general linear hypothesis (mgl)      456—464
Multivariate multiple regression      290
Multivariate normality      76 188 231—232 236 444 445 450 452 457
Multivariate reality      294
Multivariate statistics, defined      10 15 16t 36
Multivariate statistics, vs. multiple univariate statistics      342
Myers, J.L.      153
Naloxone      256—257
Narcotics      274
Natural laws      361
Negative values, influence on equity judgments      106
Nesselroade, J.R.      0
Newhaus, J.      362
Nicewander, W.R.      36 40 190 294
No motivating orientation (NMO)      167t 170 201 152 161
Noise      374
Nominal data      444 446
Non-orthogonal designs      105 106—108 194
Nonlinearity      444 450 453—456
Nonparametric alternatives      452
Normal distribution      9 18 76 80 353 517
Normal distribution of eigenvalues      353
Normal distribution, Hotelling's $T^2$ and      160 188
Normal distribution, multivariate      76 188 444
Normalization      285—286 311 314 319 323—326 329—333 337 340 363 364 375 380 384—386 389 394 415—417
Normalization, Kaiser procedure      363—364
Norton, D.W.      19
Notation      45
Notation, $n_t$, as total number of comparisons      216—218
Notation, boldface in      489
Notation, for matrix calculus      487—513
Nuisance variables      38 106
Null hypothesis      2—8 11 12 17—25 27 30 32 36 39 57 73 274 278—280 308 517 557
Null hypothesis significance testing (NHST)      2—5 439
Null hypothesis significance testing (NHST), directional two-tailed test      4
Null hypothesis significance testing (NHST), need for three-alternative hypothesis testing      4—5 6
Null hypothesis significance testing (NHST), objections to      2—3
Null hypothesis significance testing (NHST), proposed ban from APA journals      3—5
Null hypothesis significance testing (NHST), split-tailed tests      5 9—10
Null hypothesis, characteristic root and      274 278—280
Null hypothesis, discriminant function and      161
Null hypothesis, F ratio and      20 220
Null hypothesis, flatness test      173 189
Null hypothesis, gcr approach and      234 236
Null hypothesis, global      5
Null hypothesis, Hotelling's $T^2$ and      22—25
Null hypothesis, in confirmatory FA      407
Null hypothesis, in matrix form      102 174—176 279
Null hypothesis, levels test      173 189
Null hypothesis, maximum-likelihood method of FA and      407
Null hypothesis, omnibus test of      452 481
Null hypothesis, parallelism test      174 225 227—228 252
Null hypothesis, pooled covariance and      194
Null hypothesis, profile analysis and      173—176
Null hypothesis, significance test for      See Significance tests
Null hypothesis, Type I error      See Type I error
Null hypothesis, Wilks's lambda and      235
O'Curry, S.      452
O'Grady, K.E.      216 218 532
Obesity, attitudes toward      28 344—347 345t 347t
Oblique rotations      395 409 414 422 429—433
Olkin — Pratt formula      75
Olkin, I.      75
Olson, C.L.      187 232 237 451
One-tailed test, inappropriateness of      450
One-way analysis      See Analysis of variance
Optimism criterion      69
Optimization      14
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå