Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Czanderna, Madey, Powell — Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Methods of Surface Characterization)
Czanderna, Madey, Powell — Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Methods of Surface Characterization)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Methods of Surface Characterization)

Àâòîðû: Czanderna, Madey, Powell

Àííîòàöèÿ:

Presents a discussion of the damage and artifacts resulting from the beams used in surface compositional analysis or for sputter depth profiling. The first chapter deals with photon beam damage in the surface and near-surface of solids, and especially the damage from X- rays used in X-ray photoelectron spectroscopy. In the second chapter, the fundamentals of electronic-excitation processes are discussed. The third chapter is concerned with ion-bean- bombardment effects on solid surfaces at energies used for sputter depth profiling. The fourth chapter is an overview of profiling methods used for the characterization of surface topography. An overview of sputter depth profiling for near-surface compositional analysis is provided in the fifth and final chapter.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòàòèñòèêà è ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 451

Äîáàâëåíà â êàòàëîã: 28.05.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Insulators, electromigration      60—63
Insulators, SDP      403—405
Interaction potentials, Born Mayer      149
Interaction potentials, Moliere      149
Interferometer microscopes      see “Optical profiling techniques”
Interstitial-vacancypairs      120
Ion beam-solid interactions      103 105 108—140
Ion beams      104 252—255
Ion beams in surface analysis      98—102
Ion beams, amorphization of surfaces      139 159—163 202
Ion beams, angle of incidence      104 215 231
Ion beams, applications      251 252
Ion beams, clean surfaces      202 211 221 224
Ion beams, combined beam effects      249—251
Ion beams, compositional changes from      201—226
Ion beams, current density      101 104 231 380
Ion beams, damage      100 109 154—163 202
Ion beams, desorption induced      213
Ion beams, diffusion enhancement      122 202
Ion beams, Duoplasmatron source      379
Ion beams, energetic impact      99 104 198
Ion beams, energy loss      109 112
Ion beams, enhanced erosion      250
Ion beams, etching      109
Ion beams, full width at half-maximum (FWHM)      104
Ion beams, gases      see “Specific noble or reactive gas”
Ion beams, liquid metal ion source      379
Ion beams, mean projectile range      112
Ion beams, neutralization of      106 110
Ion beams, penetration and trapping      103 111 112 202 377
Ion beams, penetration depths      159—163
Ion beams, preferential sputtering      206 214 371
Ion beams, production of      378—381
Ion beams, redeposition      100 202 240
Ion beams, reflection of      110
Ion beams, reionization of      110
Ion beams, retarded erosion      250
Ion beams, scattering      109 110
Ion beams, segregation enhancement      122 202 203 211
Ion beams, sources      379—381
Ion beams, substrate interactions      116
Ion beams, topics not covered      102
Ion beams, trapping      100 105 107 110 202
Ion desorption      see “ESD”
Ion etching      see “Ion beams etching”
ion implantation      see “Sputter depth profiling trapping
Ion induced photon emission      108
Ion scattering spectrometry      see “ISS”
Ion-induced electron emission      108
Ionic crystals, F-centers      25—27
Iridium      177 182
Iron-boron alloys      210
Iron-chromium alloys      398 399
Iron-titanium alloys      398
ISO/TC 201. Subcommittee on Terminology      104
Isotopic studies in SDP      397 402 403
ISS      102 103 115 140 150 152 157 202—204 207 210 357 359 363 386 397—400 402 403
Kapton, AES damage      75
Knock-in effects      see “Sputter depth profiling (SPD) principles”
Krypton, ion bombardment      127 155—158 164 168 212 231 236
Laser interferometers      see “Scanned probe microscopies”
Lateral resolution      86
Lattice dynamics      see “Simulations”
Lattice imperfections      see “Defect production”
Layer-by-layer sputtering (removal)      100 123 125 139 252 388
Lead-tin alloys      209
Leadsulfide      156
LEED      39 140 150
LEIS      see “ISS”
Linear cascade(s)      107 119 124 367—369
Lithium fluoride      156 168
Low energy electron diffraction      see “LEED”
Low energy ion scattering      see “ISS”
Magnesium      130 189
Magnesium oxide      130
Magnetic force microscope      see “Scanned probe microscopies”
Many body potentials      see “Simulations”
Mechanical parts industries (AFM)      328
Medium energy ion scattering      102 157
Melting in AES      40
Mercury cadmium telluride      135 201
Metal oxides      213—221
Metal phosphates      223—225
Microanalyses in AES      83
Microelectronic industries      326
Molecular dynamics calculations      see “Simulations”
Molecular measuring machine      312
Moliere potential      149
Molybdenum      70 117
Molybdenum, carbide formation      70
Molybdenum, disulfide      221 222
Nanotopography      see “Sputter depth profiling (SPD) topography
Neon(Ne) ion bombardment      111 117 118 126 144—150 155—158 164 168 192 231—239 378
Neutral beam bombardment      205
Neutral desorption      108
Neutralization      see “Charging and Ion beams”
Nickel alloy decomposition      69 70 200
Nickel chromium alloys      210 229 398
Nickel oxidation by ESA      53 54
Nickel silicide modification      221
Nickel silver multilayers      166 208 398
Niobium oxides      67 214—218
Nitrogen ($\textrm{N}_2$) ion beams      212 378
Noble gas bombardment      378; see also “Argon bombardment” “Helium ion “Neon ion “Krypton “Xenon
Nomarski microscope      306
Nuclear backscattering      102 371—373;
Nuclear reaction analysis (NRA)      363
Optical elements industries      327
Optical profiling techniques      302—307
Optical profiling techniques advantages      302
Optical profiling techniques feature heights      303
Optical profiling techniques interferometry      302
Optical profiling techniques optical homogeneity      305
Optical profiling techniques sensitivity      303
Optical profiling techniques speed      303
Optical profiling techniques topographic map      305
Optical profiling techniques types      303 304
Optical profiling techniques, Nomarski type      306
Organic materials, adventitious carbon      14 15 203 224 227
Organic materials, biomolecules      203
Organic materials, cross linking      204
Organic materials, dehydrogenation      204
Organic materials, molecular ions      204
Oxidation with SPMs      332
Oxidation, electron beam enhanced      see “ESA”
Oxidation, ion beam enhanced      see “Sputter depth profiling (SPD)”
Oxide compositional changes      213—221
Oxygen ($\textrm{O}_2$), ion beams      118 129 174 186 198 199 378
Palladium      177 182 210 329 331
Palladium, carbon on      15
Peak interference      202 203
Peak shape changes in AES      44 85
Peak shape changes in in x-ray absorption data      141—145
Perovskites      217 218
Phosphates      see “Metal phosphates”
Phosphorus in Si SDP      405 407
Phosphosilicate glasses      51 82 218
Photodegradation of polymers      30
Photoemission, internal      21
Photon absorption processes      20
Photon damage to polymers      29—34
Photon induced x-ray emission (PIXE)      363
Photon-stimulated desorption      22 25 45
Platinum      143—148 168 210
Platinum, ethylene diamine chloride      28
polycarbonate      30 31 33
Polyethylene      30 203
Polyethyleneterephthalate      11 12 30 205
Polymer-metal interfaces      402—403
Polymers      11 23 29 74—76 85 203 327
Polymethylmethacrylate      204
Polypropylene      11 30 402 403
Polypyrrole, AES      75
polystyrene      30
Polyurethane      203
Polyvinylchloride      30—33 204
Potassium chloride      296 297
Preferential sputtering      see “Ion beams”
Probe shape      see “Scanned probe microscopies”
Quantitative analysis in AES      85
Radiation absorption      25
Radiation enhanced diffusion or segregation      103 165 202 223 377 387
Raman      155 159
RBS      102 155 212 223 363 412
Recoil implantation      119 121 132
Recommendations for using electron beams      85—86
Reconstruction      see “Silicon”
Redeposition      see “Ion beams Sputter depth profiling
Reflection electron microscopy      278
Reflection high-energy diffraction (RHEED)      140 150 153 157
Reflection of ions      see “Ion beams reflection
Relaxation of bonds      142
Resolution, depth      see “Depth resolution”
Resonance ionization and neutralization      107
Rutherford backscattering spectrometry      see “RBS”
Sampling depth      see also “Information depth”
Sampling depth in AES      203
Sampling depth in ISS      203
Sampling depth in XPS      203
Scanned probe microscopies      307—334 339 340
Scanned probe microscopies, AFM      173 189—191 199 307 309—311 313—326 339 340
Scanned probe microscopies, applications      320 325
Scanned probe microscopies, calibration      311
Scanned probe microscopies, carbon nanotube      316
Scanned probe microscopies, characterization      311
Scanned probe microscopies, commercial instruments      313
Scanned probe microscopies, critical dimensions      318
Scanned probe microscopies, defects      337—339
Scanned probe microscopies, displacement calibration      311 314
Scanned probe microscopies, eddy current microscopy      322
Scanned probe microscopies, electrical methods      320 324
Scanned probe microscopies, force-based methods      320—323
Scanned probe microscopies, future directions of techniques      330—334
Scanned probe microscopies, height versus spatial wavelength      339
Scanned probe microscopies, high resolution instruments      315
Scanned probe microscopies, history of      307
Scanned probe microscopies, hysteresis      311
Scanned probe microscopies, instrumentation future      330—334
Scanned probe microscopies, intercomparisons      334—339
Scanned probe microscopies, laser interferometers      311 314
Scanned probe microscopies, lateral resolution      315 316
Scanned probe microscopies, magnetic force microscope      321
Scanned probe microscopies, molecular measuring machine      312
Scanned probe microscopies, optical      320 323
Scanned probe microscopies, phase shifting profiler      334—337
Scanned probe microscopies, probe shape      318
Scanned probe microscopies, scanning near-field microscope      323
Scanned probe microscopies, scanning near-field microscope, optical microscope      323 324
Scanned probe microscopies, semiconductor structures      316
Scanned probe microscopies, silicon nanoedge      319
Scanned probe microscopies, silicon spike wafer      319
Scanned probe microscopies, specimens for calibration      314
Scanned probe microscopies, standards      311 314
Scanned probe microscopies, STM      307—309 312—320 339 340
Scanned probe microscopies, thermal      320 324
Scanned probe microscopies, topagrafmer      307
Scanned probe microscopies, types other than STM and AFM      319—325
Scanning near-field microscope      see “Scanned probe microscopies”
Scanning near-field optical microscope      see “Scanned probe microscopies”
Scanning, acoustic microscopy      365 412
Scanning, Auger microscopy      407 408
Scanning, tunneling microscopy      140—149 157 173—191 307 334; STM”
Schottky defect      26
Schottky diodes      167 213
Secondary electron emission      6 13 16
Secondary ion mass spectrometry (SIMS)      102 103 202 357 397 401—103 408—411
Segregation      see “Ion beams segregation “Sputter segregation
SEM      278 294 307 318
Semiconductor sputter depth profiling      405—408
Semiconductor surface enrichment      203 211
Shadow cones      228
Sigmund formulae      126—128 134 367—372
Signal-to-noise ratio      86
Silicate glasses, ion mobility      74
Silicon dioxide      10 12 5 49—51 82 83 101 130 168 179 197 212 217 398
Silicon, amorphous      141 159—163
Silicon, boron in      168
Silicon, bromides      211
Silicon, cones on      183 186
Silicon, depth profile of      101
Silicon, displaced atoms      135
Silicon, electron-induced oxidation      53
Silicon, enrichment in alloys      221
Silicon, ESA of      458
Silicon, etch pits      177
Silicon, fluorine in      34 212
Silicon, hydride loss      141 143
Silicon, implanted with l*      126 127
Silicon, ion desorption from glass      77
Silicon, nanoedge tip, STM      317
Silicon, nanotopography      144 145
Silicon, oxidation of      211 315
Silicon, reconstruction      165 168 309
Silicon, sputtering yield      130 376
Silicon, stepped, STM      309
Silicon, topography      177 183 190 191 196 240 334—336
Silicon, trapping in      117 118
Silicones      203
Silver      177 182 186—188
Silver iodide      8—10
Silver-copper alloys      128
Silver-nickel multilayers      164 166 208
Simulations of ion beam damage      149—151 226 227
Simulations, binary collision      138
Simulations, depth distribution      135
Simulations, depth of origin      136 138
Simulations, ejection mechanisms      136
Simulations, erosion rate      137
Simulations, molecular dynamics      135—138
Simulations, Monte Carlo      135—138 226
Simulations, preferential sputtering      137 226
Simulations, sputtering yields      135—138
Simulations, zone of mixing      136 388
Single knock-on regime      368
SNMS      359 363 386 411
Sodium chlorate      27—29
Sodium glasses      60—64 78—82
Sodium surface depletion      390
Spike regime      107 119 368—370
Sputter depth profiling (SDP)      80—85 98—102 252—255 357—412
Sputter depth profiling (SDP) advantages      100
Sputter depth profiling (SDP) alloys      see “Specific combinations”
Sputter depth profiling (SDP) altered layers      see “Zone of mixing”
Sputter depth profiling (SDP) applications      397—411
Sputter depth profiling (SDP) binary collisons      100 107 110 118—122 134
Sputter depth profiling (SDP) changes in properties      105
Sputter depth profiling (SDP) compositional changes      131—133 201—226
Sputter depth profiling (SDP) consumptive methods      362
Sputter depth profiling (SDP) corroded surfaces      398
Sputter depth profiling (SDP) depth scale      382—386
Sputter depth profiling (SDP) dynamic range      393
Sputter depth profiling (SDP) ejection of particles      101 102 105
Sputter depth profiling (SDP) energy transfer      112 366—371
Sputter depth profiling (SDP) enhance reactivity      100 105 202
Sputter depth profiling (SDP) experimental arrangement      358 360 379—381
Sputter depth profiling (SDP) field-induced migration      390 391
Sputter depth profiling (SDP) incident ion effects      106
Sputter depth profiling (SDP) layer-by-layer removal      100 123 125 139 252 388
Sputter depth profiling (SDP) limitations      100
Sputter depth profiling (SDP) methods      359 360
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå