Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Fraisse R. — Theory of Relations
Fraisse R. — Theory of Relations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Theory of Relations

Автор: Fraisse R.

Аннотация:

Relation theory originates with Hausdorff (Mengenlehre 1914) and Sierpinski (Nombres transfinis, 1928) with the study of order types, specially among chains = total orders = linear orders. One of its first important problems was partially solved by Dushnik, Miller 1940 who, starting from the chain of reals, obtained an infinite strictly decreasing sequence of chains (of continuum power) with respect to embeddability. In 1948 I conjectured that every strictly decreasing sequence of denumerable chains is finite. This was affirmatively proved by Laver (1968), in the more general case of denumerable unions of scattered chains (ie: which do not embed the chain Q of rationals), by using the barrier and the better orderin gof Nash-Williams (1965 to 68).

Another important problem is the extension to posets of classical properties of chains. For instance one easily sees that a chain A is scattered if the chain of inclusion of its initial intervals is itself scattered (6.1.4). Let us again define a scattered poset A by the non-embedding of Q in A. We say that A is finitely free if every antichain restriction of A is finite (antichain = set of mutually incomparable elements of the base). In 1969 Bonnet and Pouzet proved that a poset A is finitely free and scattered iff the ordering of inclusion of initial intervals of A is scattered. In 1981 Pouzet proved the equivalence with the a priori stronger condition that A is topologically scattered: (see 6.7.4: a more general result is due to Mislove 1984): ie: every non-empty set of initial intervals contains an isolated elements for the simple convergence topology.

In chapter 9 we begin the general theory of relations, with thenotions of local isomorphism, free interpretability and free operator (9.1 to 9.3), which is the relationist version of a free logical formula. This is generalized by the back-and-forth notions in 10.10: the (k,p)-operator is the relationist version of the elementary formula (first order formula with equality).

Chapter 12 connects relation theory with permutations: theorem of the increasing number of orbits (Livingstone, Wagner in 12.4). Also in this chapter homogeneity is introduced, then more deeply studied in the Appendix written by Norbert Saucer.

Chapter 13 connects relation theory with finite permutation groups: the main notions and results are due to Frasnay. Also mention the extension to relations of adjacent elements, by Hodges, Lachlan, Shelah who by this mean give an exact calculus of the reduction threshold.

The book covers almost all present knowledge in Relation Theory, from origins (Hausdorff 1914, Sierpinski 1928) to classical results (Frasnay 1965, Laver 1968, Pouzet 1981) until recent important publications (Abraham, Bonnet 1999).

All results are exposed in axiomatic set theory. This allows us, for each statement, to specify if it is proved only from ZF axioms of choice, the continuum hypothesis or only the ultrafilter axiom or the axiom of dependent choice, for instance.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 456

Добавлена в каталог: 19.11.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Successor ordinal $\alpha +1$      1.2.4
Successor set $\alpha +1=a \cup \{ a \}$      1.1
Sum, alephs      1.6.8
Sum, cardinals $\alpha \biguplus \beta$      1.4.5
Sum, natural sum $a \oplus b$      4.8.2
Sum, ordinals $\alpha + \beta$      1.3.1
Sum-decomposition of an indecomposable chain      6.3.4
SUPPES, Bernstein — Schroeder theorem      1.1.5
Supremum (Sup), ordinals      1.2.1
Supremum (Sup), reals      2.1.2
Supremum equality, exponentiation      1.3.3
Supremum equality, product      1.3.2
Supremum equality, sum      1.3.1
SUSLIN's axiom or hypothesis      2.2.7 5.8
SUSLIN's axiom or hypothesis, Suslin chain      5.8.1
SUSLIN's axiom or hypothesis, Suslin tree      5.8.2
Symmetric or non-symmetric Ramsey number      3.1.5
Symmetric permutation group $S_{m}$      13.6.2
System (relational)      12.3.1
Szpilrajn chain      8.6
Szpilrajn chain, denumerably Szpilrajn chain      8.6.4
SZPILRAJN, augmentation axiom      2.9.3
Tableau (bivalent)      8.4
Tableau (bivalent), tableau associated with a poset of height two      8.5.3
Tail = final interval of a sequence      7.6.1
TARSKI, equality between alephs      2.8.5
TARSKI, finite set      1.1.1
TARSKI, fixed-point lemma      1.1.3
TARSKI, immediately greater cardinal      1.6.9
TARSKI, universal class      5.10
TENNENBAUM, Suslin tree      5.8
Term in a sequence      1.2.2
Ternary cyclic relation associated to a chain      9.2.1
Thickness of a poset      6.7.3
THOMASSE      5.1.2
THOMASSE, non-embeddability rank      10.4.5
THOMASSE, posets without N      7.5.4
THOMASSE, solid or fragil a-morphism      11.6
THOMASSE, solid or fragil family      11.5
Threshold, compatibility      13.10.2
Threshold, monomorphy      13.10.6
Threshold, reduction      13.10.1
Topologically scattered poset      6.7
Topology, initial intervals      6.6.4
Topology, integers      6.6.1
Total ordering = chain      1.6.1
Totally ordered (or linear) augmentation      2.9.3
Totally ordered set (by membership)      1.2.1
Tournament      9.7
Transfinite induction      1.2.10
Transformation $\overline{f}$, inverse transformation $\overline{f^{-1}}$      1.1.2
Transitive closure      1.4.1
Transitive set      1.2.1
Translations (permutation group $T_{m}$)      13.6.2
Transposition      1.1.2
TREE      2.11
Tree, tree rich for its age      10.5.3
triangle      3.1.1
Trichotomy axiom (cardinals)      1.6.4
Trichotomy axiom (cardinals), trichotomy (ordinals)      1.2.1
Trivial cut      2.6.5
Trivial ultrafilter      2.3.2
TRUSS, augmentation and ultrafilter axioms      2.9.3
Ultrafilter, ultrafilter axiom      2.3.2
Ultrapower, ultraproduct (non-classical)      11.8
Unbounded ordinal.indexed sequence      4.13
Union ($\cup a$)      1.1
Unique sum-decomposition of an indecomposable chain      6.3.4
UNIVERSAL class      5.10
Universal class, degree of a universal class      13.12.2
Universal class, non trivial universal classes      13.3.4
Universal poset      A.2.1
Universal poset, universal graph with two types of edges      A.2.6
Universal poset, universal homogeneous relational system      A.2.9
Unordered pair = pair      1.1
Up edge      A.5.2
Upper bound (ordinals)      1.2.1
Value (+) or (-)      1.7
Value (+) or (-), value in a sequence      1.2.2
VAUGHT, criterion for a rich relation      11.4
VAUGHT, universal class      5.10.1 5.10.3
Vertex, vertices      3.1.1 A.1.4
von NEUMANN, axiom of foundation      1.2
WAGNER, increasing number of orbits      12.4
Weak ordering = stratified poset or ordering      2.10.1
Weakening of a relation      2.9.1
Weakly inaccessible aleph      2.8.10
Weakly indivisible relation or system      A.4
Weakly indivisible relation or system, weakly j-indivisible      A.4.3
Weakly indivisible relation or system, weakly S-indivisible      A.5.3
Well partial ordering (w.p.o.)      4.3.2
Well partial ordering (w.p.o.) of Rado      4.4.2 7.6.4
Well quasi-ordering (w.q.o.)      4.3.2
Well quasi-ordering of scattered chains (Laver)      7.5.4
Well relation or multirelation      13.2
Well relation or multirelation, p-well multirelation      13.2.1
Well-founded cofinal restriction      2.7.2
Well-founded interval ordering      2.2.5
Well-founded poset or quasi-ordering      2.2.2
Well-orderable set, well-ordering, well-ordering axiom      1.6.2
Well-ordered restriction equipotent with the base      4.6.3
Well-ordered restriction meeting every height      4.6.1
Well-ordered restriction meeting every height, of maximum length      4.6.2
WHEELER, saturated relation      11.3.4
WHITAKER, Bernstein — Schroeder theorem      1.1.5
WOODROW, countable representatives of an age      10.2.4
WOODROW, homogeneous graph      A.1.5
Word = finite sequence      1.2.3
Words, Higman's theorem      4.5.2
Words, partial ordering      4.1.3
WRIGHT, computation of posets      2.14
YACKEL, Ramsey numbers      3.1.5
Younger relation      10.1.3
Younger relation, $\alpha$-younger relation      10.4.1
Younger relation, A-younger relation      11.1.2
Z = set or chain of positive and negative integers      1.6.1
ZAGUIA, extraction property      4.11.3
ZERMELO, axiom of choice      1.1.8
ZF (axioms)      1.2.4
ZHU, age-inexhaustible system      A.3.3
ZIMMERMANN, computation of posets      2.14
ZORN, maximal chain axiom      2.2.4
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте