Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Regular and Chaotic Dynamics

Àâòîðû: Lichtenberg A.J., Liebermen M.A.

Àííîòàöèÿ:

This book treats nonlinear dynamics in both Hamiltonian and dissipative systems. The emphasis is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion, and the dynamical and statistical properties of the dynamics when it is chaotic. The book is intended as a self consistent treatment of the subject at the graduate level and as a reference for scientists already working in the field. It emphasizes both methods of calculation and results. It is accessible to physicists and engineers without training in modern mathematics. The new edition brings the subject matter in a rapidly expanding field up to date, and has greatly expanded the treatment of dissipative dynamics to include most important subjects. It can be used as a graduate text for a two semester course covering both Hamiltonian and dissipative dynamics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 1992

Êîëè÷åñòâî ñòðàíèö: 692

Äîáàâëåíà â êàòàëîã: 18.08.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Sink      63 461—468 570ff see
Sitnikov, K.      645
Skew-symmetric product      199
Slater, J.C.      647
Smale, S.      185 560 645
Small denominators      see “Resonant denominators”
Smith, G.R.      27 87 126 127 265 269 650
Snyder, H.S.      32 224 (646 Courant 647
Solitons      see “Integrable systems solition
Solomonoff, R.J.      309
Solov'ev, L.S.      419 420 427
Space average      see “Mean space”
Sparpaglioni, M.      (445 Livi
Spatio-temporal chaos      613ff
Spatio-temporal chaos, domain formation      614
Spatio-temporal chaos, intermittancy      617—619
Spatio-temporal chaos, lattice maps      613 620
Spatio-temporal chaos, natural spatial wavelength      617
Spectrum      see “Power spectrum”
Sprott, J.C.      650
Stability      195ff
Stability, formal      212
Stability, linear      198—200 208—212
Stability, nonlinear (Liapunov)      213
Stability, spectral      see “linear”
Stadium problem      654
Standard mapping      168 250ff
Standard mapping, accelerator modes      253
Standard mapping, barrier transition      256
Standard mapping, bifurcations      254—256
Standard mapping, conversion from Fermi to      251
Standard mapping, conversion from separatrix to      251
Standard mapping, corrections to quasilinear diffusion for      334—338
Standard mapping, dissipative      519 573—574
Standard mapping, effect of noise on      353ff
Standard mapping, fractal diagram for      279—281
Standard mapping, Greene's method applied to      271ff
Standard mapping, Hamiltonian form      256—258
Standard mapping, higher order diffusion in      328ff
Standard mapping, higher period fixed points      254—256
Standard mapping, Liapunov exponent for      314
Standard mapping, overlap criterion for      258ff
Standard mapping, period 1 fixed points      253
Standard mapping, quantized      654
Standard mapping, summary of transition to global stochasticity for      291—292
Stark, J.      (341 342 Greene
Stationary point      see “Fixed point”
Stavans, J.      636
Stein, M.L.      (497 Metropolis
Stein, P.R.      (497 Metropolis
Steinberg, V.      640
Steinman, J.      (635 637 Gollub
Stern, D.      93 141 144
Stix, T.H.      27 423
Stochastic barrier      see “Barrier transition”
Stochastic layer      see “Resonance layer”
Stochastic motion      293ff see “Diffusion”
Stochastic pump model      387ff
Stochastic pump model, diffusion calculation      387ff 396—397
Stochastic pump model, for modulational diffusion      401—405
Stochastic web      237—239
Stochasticity      see also “Stochastic motion”
Stochasticity, across a resonance layer      62
Stochasticity, along a resonance layer      61
Stochasticity, concepts of      63 302ff
Stochasticity, extrinsic      see “Extrinsic diffusion”
Stochasticity, global (or strong or connected)      51 246 291—292
Stochasticity, local (or weak or isolated)      246 291—292
Stochasticity, parameter for standard mapping      169 250
Stochasticity, regions of      51—52
Stochasticity, transition to global      245ff
Stoddard, S.D.      (38 Ford 441
Strange attractors      63ff 457ff 521ff 652 see “Roessler “Henon “Lozi “Fermi “Dissipative
Strange attractors, calculation of invariant distributions for      580ff
Strange attractors, geometric properties of      474ff
Strange attractors, leaved structure of      471 586—588
Strange attractors, Roux attractor      600—601
Strange attractors, topology of      469—471
Stream function for fluids      640—643
Strelcyn, J.M.      (245 298 301 305 311 315 316 317 319 320 Benettin
Strong focusing      647
Structural stability      305
Stupakov, G.Z.      649
Sudan, R.N.      239
Sun, B.Z.      45 48 210 213
Superadiabaticity      650 651
Superconvergence      see “Perturbation theory” “Lie “KAM
Superstate orbits      492 531
Surface of section      17—20
Surface of section, for billiards problem      382—385
Surface of section, for dissipative systems      458
Surface of section, for driven pendulum      232
Surface, energy      see “Energy surface”
Surface, KAM      see “KAM surface”
Swift, J.      507 508
Swinney, H.L.      449 534 599 601 635
Symmetries      see “Integrals isolating”
Symon, K.R.      32 219 647
Symplectic integration      172
Symplectic maps      208
Symplectic maps, in many dimensions      442 451
Symplectic matrix      197—200
System, decomposable      295 305
System, dissipative      see “Dissipative systems”
System, ergodic      see “Ergodic systems”
System, integrable      see “Integrable systems”
System, near-integrable      see “Near-integrable systems”
System, quantum      653—654
System, reaction-diffusion      652
Szebehely, V.      646
Szepfalusy, P.      576
Tabor, M.      43 250
Takens, F.      6 182 498 (499 Newhouse 598 599 635
Tang, C      628
Tangent map      208
Tangent vector, in phase space      298
Taylor, J.B.      (72 Dunnett (99 Hastie (110 128 Dunnett 131 132 (147 Dunnett 220 (247 419 423 Rosenbluth (648 Hastie
Tayursky, V.A.      (313 Chirikov
Tel, T.      576
Teller, E.      648
Tennyson, J.I.      62 179 364 365 368 374 376 377 378 382 383 384 385 386 390 392 394 406 407 409 410 411 412 647
Tent map      502—504
Thomae, S.      504 506
Three resonance theory for Arnold diffusion      see “Stochastic pump model”
Three-body problem      1 644—645
Tiling      237 239
Time average      see “Mean time”
Time-dependent Hamiltonian      see “Hamiltonian nonautonomous”
Time-independent Hamiltonian      see “Hamiltonian autonomous”
Timofeev, A.V.      364 650
Toda lattice      36—39
Toda, M.      36
Tomita, K.      652
Topology, change of      72
Toroidal magnetic fields      418ff
Toroidal magnetic fields, configurations      418—419
Toroidal magnetic fields, diffusion in      see “Diffusion in toroidal magnetic fields”
Toroidal magnetic fields, drift islands in      427
Toroidal magnetic fields, drift surfaces      425
Toroidal magnetic fields, Hamiltonian form      421—422
Toroidal magnetic fields, magnetic islands      418ff
Toroidal magnetic fields, magnetic surfaces      420—422
Torus, in phase space      164—165 375
Torus, translations on      see “Twist mapping”
Trajectories, exponential divergence of      298 307
Trajectories, mean exponential rate of divergence      299
Trajectories, of the Henon mapping      191—192
Trajectories, on a phase space torus      164—165
Trajectories, regular      20 49—51
Trajectories, stochastic      51—52
Trajnin, L.Ya.      (649 Ponomarenko
Transformation theory      7ff
Transformation, area preserving      see “Area preserving”
Transformation, canonical      see “Canonical transformation”
Transformation, Lie      see “Lie transformation”
Transient chaos      570ff
Transient chaos, chaotic repeller      536
Transient chaos, chaotic semiattractor      576
Transient chaos, Fokker — Planck equation for      572
Transient chaos, in digital phase-locked loop      572
Transient chaos, in dissipative Fermi map      574—576
Transient chaos, in generalized Henon map      572
Transient chaos, in quadratic map      570 576 579
Transient chaos, in standard map      573—574
Transient chaos, in weakly dissipative twist maps      571
Transient chaos, local description      576—580
Transient chaos, near a crisis      579ff
Transient chaos, weak dissipation      571—576
Transition to turbulence      634ff
Transition to turbulence, intermittent model      638
Transition to turbulence, Landau model      634—635
Transition to turbulence, period-doubling model      636—637
Transition to turbulence, Ruelle and Takens model      635—636
Tresser, C      532
Treve, Y.      66 446 458 474 634
Tsang, K.      574 575 584 585 586 587 588 590 592
Tsuda, I.      652
Turbulence, chemical      651—653
Turbulence, fluid      634ff
Turbulence, Lagrangian      640
Turbulence, transition to      see “Transition to turbulence”
Turner, J.S.      (38 Ford
Turnstile      345
Twist mapping      166 296—297
Twist mapping, Liapunov exponent of      313
Twist mapping, transient chaos in      571
Two-dimensional dissipative maps      508ff
Two-dimensional dissipative maps, period-doubling bifurcations in      508ff
Two-dimensional dissipative maps, quadratic      see “Two-dimensional dissipative quadratic map”
Two-dimensional dissipative quadratic map, expansion of general map      509—510
Two-dimensional dissipative quadratic map, renormalization of      510—512
Two-dimensional dissipative quadratic map, standard form      510
Two-Thirds Rule      250 287 291—292
Tyson, J.J.      652
Ueda, Y.      565
Ugodnikov, A.D.      (374 Izrailev
Uhlenbeck, G.E.      293 321
Ulam, S.      2 216 443 504
Umberger, D.K.      528
Usikov, D.A.      (237 Zaslavskii
Valkering, T.P.      (219 van
Valz-Gris, F.      (653 Casati
van der Weele, J.P.      219
VanZeyts, J.B.J.      490 515
Variational Principle      8
Variational theory, for closed orbits      155—156
Variational theory, for KAM tori      249
Vidal, C.      (638 Roux 652
Vivaldi, F.      (42 Bountis (62 398 404 Chirikov
von Neumann, J.      504 645
VonZeipel, H.      1 75 79 454
Vulpiani, A.      (445 Livi
Waddell, B.V.      (436 White
Walker, G.H.      247 645
Walker, J.      652
Wang, M.C.      283 321
Watari, T.      651
Watenabe, T.      651
Waters, J.      444
Watson, C.J.H.      651
Wave-particle interaction, accidental degeneracy for oblique propagation      122—123
Wave-particle interaction, canonical perturbation theory for      87ff
Wave-particle interaction, global removal of resonances      131—133
Wave-particle interaction, Hamiltonian      87
Wave-particle interaction, intrinsic degeneracy for perpendicular propagation      124
Wave-particle interaction, level curves (invariant curves)      90—93
Wave-particle interaction, numerical results      126—129
Wave-particle interaction, resonances      89—90
Wave-particle interaction, resonant      122ff
Wave-particle interaction, second-order islands for      268
Wedge operator      301 564
Wegmann, K.      652
Weinstein, A.      (48 213 Holm
Weiss, J.B.      640 641 643
Wentzel, G.      1
Westervelt, R.M.      594
White, R.B.      328 (328 Rechester 334 335 (346 Karney 353 (304 354 Rechester 354 436
Whiteman, K.J.      53 54 55 93 141 144 645
Whittaker, E.T.      7 14 16 24 39 141 645
Widom, M.      576
Wiedemann, H.      648
Winding number      526 530
Winfree, A.      652
Wintner, A.      646
WKB solution      76
Wolf, A.      507 508 602 603
Wong, B.W.      519 520 522
Wood, B.P.      237 238 242 248 358 361 363 442
Wright, H.L.      441
Wronskian determinant      30
Wyeth, N.C.      650
Yamada, T.      651
Yamazaki, H.      651
Yasnetsky, A.N.      (649 Ponomarenko
Yeh, W.L.      548
Yorke, J.      476 497 549 550—560 571 576 579 580 590 591 597
Yoshida, H.      43
Yurchenko, V.I.      (649 Ponomarenko
Zabusky, N.J.      439 448
Zaiken, A.N.      652
Zakharov, M.Yu.      (237 Zaslavskii
Zaslavskii map      477
Zaslavskii, G.M.      216 237 (247 Rosenbluth 298 (419 423 Rosenbluth {All Filonenko 519 653 654
Zhabotinsky, A.M.      652
Zisook, A.B.      506 507
Zubarev, D.N.      93 103
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå