|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Sink 63 461—468 570ff see
Sitnikov, K. 645
Skew-symmetric product 199
Slater, J.C. 647
Smale, S. 185 560 645
Small denominators see “Resonant denominators”
Smith, G.R. 27 87 126 127 265 269 650
Snyder, H.S. 32 224 (646 Courant 647
Solitons see “Integrable systems solition
Solomonoff, R.J. 309
Solov'ev, L.S. 419 420 427
Space average see “Mean space”
Sparpaglioni, M. (445 Livi
Spatio-temporal chaos 613ff
Spatio-temporal chaos, domain formation 614
Spatio-temporal chaos, intermittancy 617—619
Spatio-temporal chaos, lattice maps 613 620
Spatio-temporal chaos, natural spatial wavelength 617
Spectrum see “Power spectrum”
Sprott, J.C. 650
Stability 195ff
Stability, formal 212
Stability, linear 198—200 208—212
Stability, nonlinear (Liapunov) 213
Stability, spectral see “linear”
Stadium problem 654
Standard mapping 168 250ff
Standard mapping, accelerator modes 253
Standard mapping, barrier transition 256
Standard mapping, bifurcations 254—256
Standard mapping, conversion from Fermi to 251
Standard mapping, conversion from separatrix to 251
Standard mapping, corrections to quasilinear diffusion for 334—338
Standard mapping, dissipative 519 573—574
Standard mapping, effect of noise on 353ff
Standard mapping, fractal diagram for 279—281
Standard mapping, Greene's method applied to 271ff
Standard mapping, Hamiltonian form 256—258
Standard mapping, higher order diffusion in 328ff
Standard mapping, higher period fixed points 254—256
Standard mapping, Liapunov exponent for 314
Standard mapping, overlap criterion for 258ff
Standard mapping, period 1 fixed points 253
Standard mapping, quantized 654
Standard mapping, summary of transition to global stochasticity for 291—292
Stark, J. (341 342 Greene
Stationary point see “Fixed point”
Stavans, J. 636
Stein, M.L. (497 Metropolis
Stein, P.R. (497 Metropolis
Steinberg, V. 640
Steinman, J. (635 637 Gollub
Stern, D. 93 141 144
Stix, T.H. 27 423
Stochastic barrier see “Barrier transition”
Stochastic layer see “Resonance layer”
Stochastic motion 293ff see “Diffusion”
Stochastic pump model 387ff
Stochastic pump model, diffusion calculation 387ff 396—397
Stochastic pump model, for modulational diffusion 401—405
Stochastic web 237—239
Stochasticity see also “Stochastic motion”
Stochasticity, across a resonance layer 62
Stochasticity, along a resonance layer 61
Stochasticity, concepts of 63 302ff
Stochasticity, extrinsic see “Extrinsic diffusion”
Stochasticity, global (or strong or connected) 51 246 291—292
Stochasticity, local (or weak or isolated) 246 291—292
Stochasticity, parameter for standard mapping 169 250
Stochasticity, regions of 51—52
Stochasticity, transition to global 245ff
Stoddard, S.D. (38 Ford 441
Strange attractors 63ff 457ff 521ff 652 see “Roessler “Henon “Lozi “Fermi “Dissipative
Strange attractors, calculation of invariant distributions for 580ff
Strange attractors, geometric properties of 474ff
Strange attractors, leaved structure of 471 586—588
Strange attractors, Roux attractor 600—601
Strange attractors, topology of 469—471
Stream function for fluids 640—643
Strelcyn, J.M. (245 298 301 305 311 315 316 317 319 320 Benettin
Strong focusing 647
Structural stability 305
Stupakov, G.Z. 649
Sudan, R.N. 239
Sun, B.Z. 45 48 210 213
Superadiabaticity 650 651
Superconvergence see “Perturbation theory” “Lie “KAM
Superstate orbits 492 531
Surface of section 17—20
Surface of section, for billiards problem 382—385
Surface of section, for dissipative systems 458
Surface of section, for driven pendulum 232
Surface, energy see “Energy surface”
Surface, KAM see “KAM surface”
Swift, J. 507 508
Swinney, H.L. 449 534 599 601 635
Symmetries see “Integrals isolating”
Symon, K.R. 32 219 647
Symplectic integration 172
Symplectic maps 208
Symplectic maps, in many dimensions 442 451
Symplectic matrix 197—200
System, decomposable 295 305
System, dissipative see “Dissipative systems”
System, ergodic see “Ergodic systems”
System, integrable see “Integrable systems”
System, near-integrable see “Near-integrable systems”
System, quantum 653—654
System, reaction-diffusion 652
Szebehely, V. 646
Szepfalusy, P. 576
Tabor, M. 43 250
Takens, F. 6 182 498 (499 Newhouse 598 599 635
Tang, C 628
Tangent map 208
Tangent vector, in phase space 298
Taylor, J.B. (72 Dunnett (99 Hastie (110 128 Dunnett 131 132 (147 Dunnett 220 (247 419 423 Rosenbluth (648 Hastie
Tayursky, V.A. (313 Chirikov
Tel, T. 576
Teller, E. 648
Tennyson, J.I. 62 179 364 365 368 374 376 377 378 382 383 384 385 386 390 392 394 406 407 409 410 411 412 647
Tent map 502—504
Thomae, S. 504 506
Three resonance theory for Arnold diffusion see “Stochastic pump model”
Three-body problem 1 644—645
Tiling 237 239
Time average see “Mean time”
Time-dependent Hamiltonian see “Hamiltonian nonautonomous”
Time-independent Hamiltonian see “Hamiltonian autonomous”
Timofeev, A.V. 364 650
Toda lattice 36—39
Toda, M. 36
Tomita, K. 652
| Topology, change of 72
Toroidal magnetic fields 418ff
Toroidal magnetic fields, configurations 418—419
Toroidal magnetic fields, diffusion in see “Diffusion in toroidal magnetic fields”
Toroidal magnetic fields, drift islands in 427
Toroidal magnetic fields, drift surfaces 425
Toroidal magnetic fields, Hamiltonian form 421—422
Toroidal magnetic fields, magnetic islands 418ff
Toroidal magnetic fields, magnetic surfaces 420—422
Torus, in phase space 164—165 375
Torus, translations on see “Twist mapping”
Trajectories, exponential divergence of 298 307
Trajectories, mean exponential rate of divergence 299
Trajectories, of the Henon mapping 191—192
Trajectories, on a phase space torus 164—165
Trajectories, regular 20 49—51
Trajectories, stochastic 51—52
Trajnin, L.Ya. (649 Ponomarenko
Transformation theory 7ff
Transformation, area preserving see “Area preserving”
Transformation, canonical see “Canonical transformation”
Transformation, Lie see “Lie transformation”
Transient chaos 570ff
Transient chaos, chaotic repeller 536
Transient chaos, chaotic semiattractor 576
Transient chaos, Fokker — Planck equation for 572
Transient chaos, in digital phase-locked loop 572
Transient chaos, in dissipative Fermi map 574—576
Transient chaos, in generalized Henon map 572
Transient chaos, in quadratic map 570 576 579
Transient chaos, in standard map 573—574
Transient chaos, in weakly dissipative twist maps 571
Transient chaos, local description 576—580
Transient chaos, near a crisis 579ff
Transient chaos, weak dissipation 571—576
Transition to turbulence 634ff
Transition to turbulence, intermittent model 638
Transition to turbulence, Landau model 634—635
Transition to turbulence, period-doubling model 636—637
Transition to turbulence, Ruelle and Takens model 635—636
Tresser, C 532
Treve, Y. 66 446 458 474 634
Tsang, K. 574 575 584 585 586 587 588 590 592
Tsuda, I. 652
Turbulence, chemical 651—653
Turbulence, fluid 634ff
Turbulence, Lagrangian 640
Turbulence, transition to see “Transition to turbulence”
Turner, J.S. (38 Ford
Turnstile 345
Twist mapping 166 296—297
Twist mapping, Liapunov exponent of 313
Twist mapping, transient chaos in 571
Two-dimensional dissipative maps 508ff
Two-dimensional dissipative maps, period-doubling bifurcations in 508ff
Two-dimensional dissipative maps, quadratic see “Two-dimensional dissipative quadratic map”
Two-dimensional dissipative quadratic map, expansion of general map 509—510
Two-dimensional dissipative quadratic map, renormalization of 510—512
Two-dimensional dissipative quadratic map, standard form 510
Two-Thirds Rule 250 287 291—292
Tyson, J.J. 652
Ueda, Y. 565
Ugodnikov, A.D. (374 Izrailev
Uhlenbeck, G.E. 293 321
Ulam, S. 2 216 443 504
Umberger, D.K. 528
Usikov, D.A. (237 Zaslavskii
Valkering, T.P. (219 van
Valz-Gris, F. (653 Casati
van der Weele, J.P. 219
VanZeyts, J.B.J. 490 515
Variational Principle 8
Variational theory, for closed orbits 155—156
Variational theory, for KAM tori 249
Vidal, C. (638 Roux 652
Vivaldi, F. (42 Bountis (62 398 404 Chirikov
von Neumann, J. 504 645
VonZeipel, H. 1 75 79 454
Vulpiani, A. (445 Livi
Waddell, B.V. (436 White
Walker, G.H. 247 645
Walker, J. 652
Wang, M.C. 283 321
Watari, T. 651
Watenabe, T. 651
Waters, J. 444
Watson, C.J.H. 651
Wave-particle interaction, accidental degeneracy for oblique propagation 122—123
Wave-particle interaction, canonical perturbation theory for 87ff
Wave-particle interaction, global removal of resonances 131—133
Wave-particle interaction, Hamiltonian 87
Wave-particle interaction, intrinsic degeneracy for perpendicular propagation 124
Wave-particle interaction, level curves (invariant curves) 90—93
Wave-particle interaction, numerical results 126—129
Wave-particle interaction, resonances 89—90
Wave-particle interaction, resonant 122ff
Wave-particle interaction, second-order islands for 268
Wedge operator 301 564
Wegmann, K. 652
Weinstein, A. (48 213 Holm
Weiss, J.B. 640 641 643
Wentzel, G. 1
Westervelt, R.M. 594
White, R.B. 328 (328 Rechester 334 335 (346 Karney 353 (304 354 Rechester 354 436
Whiteman, K.J. 53 54 55 93 141 144 645
Whittaker, E.T. 7 14 16 24 39 141 645
Widom, M. 576
Wiedemann, H. 648
Winding number 526 530
Winfree, A. 652
Wintner, A. 646
WKB solution 76
Wolf, A. 507 508 602 603
Wong, B.W. 519 520 522
Wood, B.P. 237 238 242 248 358 361 363 442
Wright, H.L. 441
Wronskian determinant 30
Wyeth, N.C. 650
Yamada, T. 651
Yamazaki, H. 651
Yasnetsky, A.N. (649 Ponomarenko
Yeh, W.L. 548
Yorke, J. 476 497 549 550—560 571 576 579 580 590 591 597
Yoshida, H. 43
Yurchenko, V.I. (649 Ponomarenko
Zabusky, N.J. 439 448
Zaiken, A.N. 652
Zakharov, M.Yu. (237 Zaslavskii
Zaslavskii map 477
Zaslavskii, G.M. 216 237 (247 Rosenbluth 298 (419 423 Rosenbluth {All Filonenko 519 653 654
Zhabotinsky, A.M. 652
Zisook, A.B. 506 507
Zubarev, D.N. 93 103
|
|
|
Ðåêëàìà |
|
|
|