Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Regular and Chaotic Dynamics

Àâòîðû: Lichtenberg A.J., Liebermen M.A.

Àííîòàöèÿ:

This book treats nonlinear dynamics in both Hamiltonian and dissipative systems. The emphasis is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion, and the dynamical and statistical properties of the dynamics when it is chaotic. The book is intended as a self consistent treatment of the subject at the graduate level and as a reference for scientists already working in the field. It emphasizes both methods of calculation and results. It is accessible to physicists and engineers without training in modern mathematics. The new edition brings the subject matter in a rapidly expanding field up to date, and has greatly expanded the treatment of dissipative dynamics to include most important subjects. It can be used as a graduate text for a two semester course covering both Hamiltonian and dissipative dynamics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: second edition

Ãîä èçäàíèÿ: 1992

Êîëè÷åñòâî ñòðàíèö: 692

Äîáàâëåíà â êàòàëîã: 18.08.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Noninvertible maps, chaotic behavior in      497ff
Nonlinearity parameter, definition      114
Northrop, T.G.      141 648
Noyes, R.M.      652
Numerical errors      310—312
Numerical errors, in finding KAM curve      275
O'Neil, M.N.      439 448 449
Olsen, L.F.      (652 Degn
One-dimensional noninvertible maps      478ff
One-dimensional noninvertible maps, for Roessler attr actor      469
One-dimensional noninvertible maps, logistic      see “Logistic map”
One-dimensional noninvertible maps, quadratic      see “One-dimensional quadratic map”
One-dimensional quadratic map      479ff
One-dimensional quadratic map, bifurcation phenomena      482—485
One-dimensional quadratic map, fixed points and stability      481—485
One-dimensional quadratic map, intermittent behavior in      538ff 638
One-dimensional quadratic map, invariant distributions for      498—502
One-dimensional quadratic map, Liapunov exponent for      497—499
One-dimensional quadratic map, mirror symmetry in      481—482
One-dimensional quadratic map, periodic cycles for      495—497
One-dimensional quadratic map, power spectrum for      493—495 504—508
One-dimensional quadratic map, renormalization procedures      485—493
One-dimensional quadratic map, reverse bifurcations of chaotic bands      504
One-dimensional quadratic map, trajectories for      484—485
One-dimensional quadratic map, transient chaos in      576 579
Oono, Y.      (653 Yamazaki
Orthogonal metrics      418
Orzag, S.A.      630
Oscillation center diffusion      see “Resonance streaming”
Oscillator, harmonic      see “Harmonic oscillator”
Oscillator, harmonic, multidimensional      374ff 437ff
Oscillator, harmonic, nonlinear      73
Oseledec, V.I.      298 300 301 498
Oster, G.F.      497
Ott, E.      341 342 458 474 547 550—560 571 576 579 580 582 590 591 597 654
Overlap criterion      247 258ff 291
Overlap criterion, comparison with Fermi acceleration      264
Overlap criterion, for first and second harmonies      259—262
Overlap criterion, for many degrees of freedom      440
Overlap criterion, for multiplet      364—369 400
Overlap criterion, including separatrix layer thickness      262—264
Overlap criterion, simple      259
Packard, N.      (68 Farmer 478 598
Papayannopoulos, T.      646
Parker, T.S.      458
Particle-wave interaction      see “Waveparticle interaction”
Pasta, J.R.      2 443 (443 Bivins
Pecelli, G.      (645 Churchill
Peierls, R.F.      (648 Herrera
Pendulum, driven one-dimensional      231ff
Pendulum, driven, second-order islands for      265ff 268ff
Pendulum, exact solution for      27—29
Pendulum, mean half-period for separatrix motion      392—393
Pendulum, phase or frequency modulated      364—368
Pendulum, second order solution by Lie transformations      138—140
Pendulum, solution by perturbation theory      81—83
Penrose      0. 293
Percival, I.C.      172 250 339 341 654
Pereira, N.      (134 Kaufman 268 269
Perez, R.      532 548
Period-doubling bifurcations      65 see “Reverse
Period-doubling bifurcations, in Henon attractor      472—474
Period-doubling bifurcations, in one-dimensional quadratic map      482ff
Period-doubling bifurcations, in Roessler attractor      468—471
Period-doubling bifurcations, in two-dimensional dissipative maps      508ff
Period-doubling bifurcations, model for transition to turbulence      see “Transition to turbulence”
Periodic delta function      171
Periodic delta function, use in billiards problem      387
Periodic delta function, use in Fermi acceleration      229
Periodic delta function, use in standard mapping      256
Periodic orbits      see also “Fixed points”
Periodic orbits, in one-dimensional quadratic map      482ff
Periodic orbits, series solutions for      154ff 195
Perran, J.W.      (652 Degn
Perrini, U.      (637 Giglio
Perturbation theory, adiabatic      93ff
Perturbation theory, applied to periodic orbits of the Henon and Heiles system      158—161
Perturbation theory, canonical      70ff
Perturbation theory, canonical adiabatic      96ff
Perturbation theory, contrasting slow and small      95—96
Perturbation theory, for Fermi acceleration      229—230
Perturbation theory, for periodic orbits      154ff
Perturbation theory, higher order      72 see
Perturbation theory, Newton's method      150—151
Perturbation theory, one degree of freedom      78ff
Perturbation theory, pendulum      81—83
Perturbation theory, power series expansion      72—74
Perturbation theory, secular      72 109ff
Perturbation theory, small denominators      75—78
Perturbation theory, super convergent      71
Perturbation theory, superconvergent methods      149ff
Perturbation theory, two or more degrees of freedom      83ff
Perturbation theory, using Lie transformations      see “Lie transformations”
Perturbation theory, variational method      155—156
Perturbation theory, with explicit time dependence      85—87
Pesin, Ya.B.      298 304
Pettini, M.      445 446 447
Phase space, boundary      13
Phase space, coarse graining      85 303 647 652
Phase space, contraction      459—460
Phase space, extended      15—16
Phase space, for dissipative system      459—460
Phase space, in Lorenz system      66
Phase space, incompressible flow in      14
Phase space, motion      12ff
Phase space, reduced      16 19
Phase space, tangent vector in      264
Phase space, tiling      238
Phase space, trajectory      12
Phase space, transformation of      171
Phase space, volume      13
Phase space, volume contraction of      459—460
Phase space, web      239
Plateau diffusion      see “Diffusion plateau”
Poincare surface of section      see “Surface of section”
Poincare — Bendixson theorem      460
Poincare — Birkhoff theorem      183—185
Poincare, H.      1 14 71 75 79 93 185 645
Poisson brackets      10—11
Poisson brackets, use with Lie transformations      135
Pomeau, Y.      538 539 540 548 638
Pomphrey, N.      250
Ponderomotive force      144—147 460
Ponomarenko, V.G.      649
Post, H.W.      (202 Roberts (219 van
Power spectrum      634
Power spectrum, for fluid velocity      636
Power spectrum, for heat transport      636
Power spectrum, for Lorenz system      67
Power spectrum, for one-dimensional quadratic map      493—495 504—508
Power spectrum, for Roessler attractor      469—470
Prediction, short and long time      see “Reconstruction”
probability density      see also “Invariant distribution”
Probability density, conditional      329
Probability density, transition      321
Procaccia, L.      478 533 538 545 546 547 589 591 592 603 604 606
Prodi, G.      634
Pustylnikov, L.D.      219
Quadratic form, invariance of      199
Quadratic mappings, De Vogelaere      514
Quadratic mappings, Hamiltonian      512ff
Quadratic mappings, Henon's dissipative      see “Henon attractor”
Quadratic mappings, Henon's twist      191ff
Quadratic mappings, logistic      see “Logistic map”
Quadratic mappings, one-dimensional noninvertible      see “One-dimensional quadratic map”
Quadratic mappings, two-dimensional dissipative      see “Two-dimensional dissipative map”
Quantum systems      653—654
Quasiaccelerator mode      345ff
Quasicrystal      239
Quasilinear diffusion      329 414
Quasilinear diffusion, corrections to      334—335
Quasimode      444
Quispel, G.R.W.      202
Rabinovich, M.I.      (373 Izrailev 458
Ram, A.K.      364
Ramani, A.      (42 Ablowitz
Rand, D.      531
Random phase assumption      323—324 388
Random sequences      309—310
Randomness      309ff
Randomness, definition of      309
Randomness, relation to complexity      309—310
Rannou, P.      311
Ratin, T.      45 48 213
Rayleigh numbers      632
Rayleigh — Benard convection      65 630 631—634
Rayleigh — Benard convection, in binary fluids      640
Reaction-diffusion systems      613
Rechester, A.B.      27 328 334 335 (346 Karney 353 355 423
Reconstruction      597ff
Reconstruction, autocorrelation function for      599
Reconstruction, delay coordinates for      598ff
Reconstruction, embedding dimension for      589ff
Reconstruction, forecasting      606
Reconstruction, global      608ff
Reconstruction, local      604ff
Reconstruction, mutual information for      599
Reconstruction, noise reduction      61 Off
Reconstruction, of fractal dimension      602ff
Reconstruction, redundancy for      600
Reconstruction, singular systems analysis for      601
Reconstruction, statistical quantities      602ff
Reduction      44ff
Redundancy      600
Renormalization      485ff 542ff
Renormalization group      491 542ff
Renormalization, for intermittancy      542ff
Renormalization, for one-dimensional quadratic map      485ff
Renormalization, for power spectra      493—495 504—508
Renormalization, for resonance islands      122
Renormalization, for two resonances      249 281ff 291—292
Renormalization, for two-dimensional dissipative quadratic map      509—512
Renormalization, for two-dimensional Hamiltonian map      512—519
Renormalization, functional      491—493 542ff
Renormalization, transformation      286
Renyi, A.      589
Repeller, chaotic      576
Rescaling parameters      see “Renormalization”
Residue      see “Mean residue”
Resonance layer      51 61—62 375—380 383—384 406—407
Resonance streaming      406ff see
Resonance streaming, diffusion calculation      407—412
Resonance streaming, geometric construction      406—407
Resonance streaming, numerical results      410—412
Resonance streaming, of oscillation center      406—407 414—416
Resonance streaming, relation to diffusion of a parameter      416—418
Resonance surface      see “Resonance layer”
Resonance vector      374—380 406—407
Resonance, between unperturbed frequencies      111
Resonance, coupling      385—386 393ff 409—410
Resonance, effect of      77—78
Resonance, global removal of      128ff
Resonance, higher order      117ff
Resonance, in multidimensional oscillations      373ff
Resonance, islands      49 70
Resonance, overlap      see “Overlap criterion”
Resonance, passage through      101
Resonance, primary      51
Resonance, removal of      11 Off
Resonance, removal of secondary      119—120
Resonance, secondary      51 109
Resonance, secondary in wave-particle interaction      124—126
Resonant denominators      85 98
Reverse bifurcations, in one-dimensional quadratic map      505
Reverse bifurcations, in Roessler attractor      469—470
Reversibility      202
Reynold's number      629
Rigid body      46—48 214
Roberts, J.A.G.      202
Rod, D.L.      (641 Churchhill
Roessler attractor      466—471
Roessler, O.E.      468 652
Rognlien, T.D.      650
Rosenbluth, M.N.      247 (328 353 354 355 Rechester 419 423 425 (436 White 649 650
Rossi, A.      (634 Roux (652 Vidal
Rotation      22
Roundoff errors      310—312
Roux, J.C.      600 634 638 (652 Vidal
Rowlands, G.      (94 Cohen 406 412 413 416 581 (648 Cohen 649
Rubinow, S.      653
Rudnick, J.      495 498 538 543
Ruelle and Takens model      see “Transition to turbulence”
Ruelle, D.      6 458 598 635 (635 Newhouse 652
Ruffo, S.      (445 Uwi
Russell, D.A.      476 477
Ruytov, D.D.      649
Sagdeev, R.Z.      (237 Zarlavskii (423 Filonenko 429 435 (247 428 435 Rosenbluth
Saltzman, B.      633
Samec, T.K.      650
Sandpiles      see “Self-organized criticality”
Saramito, B.      634
Satija, I.I.      531
Sato, T.      240 373 381 (651 Watari
Scaling index spectrum      592ff
Scheidecker, J.-P.      298 315 440
Schluter, A.      94 648
Schmidt, G.      256 259 279 280 425 519 520 522 (523 Chen
Schmits, R.A.      652
Schroedinger equation, nonlinear      449
Schuster, H.G.      458 491 538 541 542 543 545 546 547
Second-order islands      189 194 248 264ff 291
Second-order islands, for wave-particle interaction      268
Second-order islands, near elliptic fixed points      265ff
Second-order islands, near the separatrix      268ff
Segur, H.      (42 Ablowitz 42 (42 Bounds 43
Seidl, M.      109 650
Self-organized criticality      620ff
Self-organized criticality, avalanches      621
Self-organized criticality, coupled differential equations      625ff
Self-organized criticality, coupled mappings      620ff
Self-organized criticality, earthquake model      625—628
Self-organized criticality, sandpiles      620
Self-organized criticality, scaling spectra for      622—625
Separatrix crossings      363ff
Separatrix layer      see “Resonance layer”
Separatrix mapping      236ff 243
Separatrix mapping, conversion to standard mapping      251
Separatrix mapping, use in overlap criterion      262—264
Separatrix, for pendulum      28
Separatrix, motion for driven pendulum      231ff
Separatrix, motion for Duffing's equation      565—567
Separatrix, stochastic motion near      51 560ff
Separatrix, web      237—239
Sessler, A.      219 647
Shadowing theorem      see “Noise reduction”
Shafranov, V.D.      420 427
Shaw, R.      64 (68 Farmer 458 468 469 (478 Packard 497 499 500 501 502 582
Shenker, S.J.      249 530
Shepelyanski, D.L.      342 (392 397 403 654 Chirikov 654
Shimada, I.      315
Shraiman, B.I.      531
Siambis, J.      649
Sidorowich, J J.      605 607 610 611
Siegel, C.L.      181 645 646
Simo, C      473 474
Simo, C.      213
Sinai, Ya.G.      60 67 304 342
Sine — Gordon equation      450
Singular systems analysis for reconstruction      601
Singularity      see “Fixed point”
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå