|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Involutions, calculation of Fermi mapping bifurcations 227—229
Involutions, product of 169 201—202
Ion cyclotron heating 650—651
Islands see also “Resonance”
Islands, amplitude of 114 121
Islands, magnetic 418ff
Islands, primary 51
Islands, second-order see “Second-order islands”
Islands, secondary 51
Islets of stability 256 see
Itatani, R. (87 126 270 Fukuyama
Izrailev, F.M. 113 (313 Chirikov (374 Gadiyak 374 (392 403 Chirikov 443 444 570 582 647 (653 Casati (654 Chirikov^al.)
Jacobi's identity 11
Jacobian matrix 20 203 271 459 461 509—510 562—563
Jaeger, F. 99 113 121 248 293 364 620 625 650
Jeffries, C 548
Jensen, M.H. 528 529 531 533 594 596 597 621 625
Johnston, S. 134
Jordan, W. (649 Gibson
K-systems 304ff 654
Kadanoff, L.P. 172 249 620 624
KAM surface 46 61 378 see
KAM surface, curve 49
KAM surface, for Lagrangian turbulence in fluids 643
KAM theory 49 174ff
KAM theory, conditions for 174
KAM theory, converse 289ff
KAM theory, moderate nonlinearity for 182—183
KAM theory, smoothness condition 180—182 221—222
KAM theory, sufficient irrationality for 182—183
KAM theory, sufficient nonlinearity for 177—180
KAM theory, tori, variational principal for 249
Kamimura, T. 348 349
Kaneko, I. 442 533 614 616 618 619
Kantz, H. 576 577 578
Kao, Y.H. 548
Kaplan and Yorke map 477
Kaplan, J. 476 557
Karimabadi, H. 240
Karney, C.F.F. 87 90 91 92 126 128 129 342 343 650
Kaufman, A.N. 87 126 127 134 268 651 653 654
KdV equation 443 448
Keeler, J.D. 613 614 615 618
Keller, J. 653
Kepler problem 34
Khinchin, A.Ya. 273
Kicked rotor 219
Kim, S.Y. 349
King, G.P. 99 601 602
Klein, A. 249
Knobloch, E. 640 641 643
Kobayashi, T. 545
Kolmogorov entropy see “KS entropy”
Kolmogorov, A.N. 3 71 149 175 304 309 629
Kolomensky, A.A. 647
Kolovski, A.R. 449
Konishi, T. 442
Kopell, N. 652
Kramers, H.A. 1
Krein collision 209
Krein's theorem 209
Krilin, L. 648
Krishnaprasad, P.S. 48
Kruskal, M.D. 1 77 93 103 (141 Northrop 439 448 (457 Northrop 648
Krylov, N. 93 103 304
KS entropy 308
KS entropy, determination of 312ff
KS entropy, for Henon — Heiles system 316—318
KS entropy, relation to Liapunov exponents 304—305
Kuckes, A.F. 650
Kulsrud, R.M. 77
Kummer, M. 645
Kuramoto, Y. 653
Lacina, J. 648
Lagrangian 7
Lagrangian, averaged, for closed orbits 155—157
Lahiri, A. 541
Laing, E.W. 13 (72 110 131 Dunnett 132 (147 Dunnett
Lamb, G. 43 439
Landau model see “Transition to turbulence”
Landau, L.D. 7 322 634
Landolfi, M. 445 446 447
Lanford, O. 66 67 461 466 (509 Collet
Langer, J.S. 620 625 626 627 629
Laslett, L.J. 109 647
Lattice maps 613 see
Lazar, N. 650
Leach, P.G.L. 32
Lebedev, A.N. 647
Lee, D.K. (436 437 Carreras
Legendre transformation 9 593
Lennard — Jones system 441—442
Lewis, H.R. Jr.
Li, C-T. 249 497
Liapunov exponent 298ff
Liapunov exponent, determination of 312ff
Liapunov exponent, for dissipative maps and flows 460—461
Liapunov exponent, for high-dimensional systems 447 456
Liapunov exponent, for integrable systems 312—313
Liapunov exponent, for logistic map 504
Liapunov exponent, for one-dimensional map 497 499
Liapunov exponent, for quadratic map 499
Liapunov exponent, for tent map 502—504
Liapunov exponent, higher order 301—302
Liapunov exponent, numerical calculation of 315ff
Liapunov exponent, relation between maps and flows 302
Liapunov exponent, relation to fractal dimension 376—377
Liapunov exponent, relation to KS entropy 304—305
Liapunov exponent, symmetry of 301
Liapunov exponent, test for stochasticity 315—317
Liapunov, A.M. 298
Libchaber, A. 638
Libration 22
Lichtenberg, A.J. 14 24 58 (62 Tennyson 77 (99 Jaeger 99 113 121 194 195 196 216 221 222 224 226 237 238 248 (248 Jaeger et 254 (210 211 219 292 Howard 289 290 325 328 345 348 351 352 358 (374 379 382 383 384 386 390 392 394 Tennyson (419 421 423 Freis All (429 Gell (440 Howard (451 Goeddeef (647 650 Jaeger 641 (650 Wyeth (650 Howard 650 651
Lie transformations 133ff
Lie transformations, adiabatic invariants 141ff
Lie transformations, applied to pendulum 138—140
Lie transformations, applied to pondermotive force 144—147
Lie transformations, applied to slowly varying harmonic oscillator 142—144
Lie transformations, comparison with mixed variables 133—134
Lie transformations, elimination of secularity 141—142
Lie transformations, evolution operator 135
Lie transformations, for second harmonic of standard mapping 259—262
Lie transformations, general theory 135ff
Lie transformations, generating function 135
Lie transformations, Lie operator 135
Lie transformations, perturbation series 136ff
Lie transformations, resonant denominators 138
Lie transformations, second order invariants for waveparticle resonance 147—148
Lie transformations, superconvergent series 152ff
Lieberman, M.A. 58 61 (62 Tennyson (99 Jaeger 99 216 (216 Lichtenberg 221 222 224 (226 Lichtenberg (248 Jaeger 248 289 290 (210 211 219 228 292 Howard (324 Lichtenberg 325 328 (344 Lichtenberg 351 352 368 385 386 (374 379 382 383 384 386 390 392 Tennyson 393 397 (404 405 Chirikov (440 Howard (451 Goedde 534 535 536 537 650 (649 Jaeger (650 WLYeth (650 Howard 575 584 585 586 587 588
Limit cycle 63 462—466 461
Linear stability 196ff
Linear stability, for Fermi mapping 223—225
Linear stability, for quadratic map 483—485
Linear stability, for separatrix mapping 236—237
Linear stability, for standard mapping 253—256
Linear stability, for two dimensional mapping 202ff
Linear stability, in higher dimensions 208—211
Linearized motion 195ff see
Liouville's theorem 14 459
Lipshitz cone 290
Littlejohn, R. 45 103 134
Littlewood, J.E. 144
Liu, C.S. (141 648 Northrop
Livi, R. 445
Livingston, M.S. (646 Courant
Lo Destro, L.L. (650 Smith
Lo Vecchio, G. 441
Logistic map 479ff 614
| Longcope, D.W. 239
Lorenz system 65ff
Lorenz system, derivation of 631—633
Lorenz system, extension to many modes 633—634
Lorenz system, intermittent behavior in 638
Lorenz, E.N. 6 65 66 68 69 504 631 633
Lozi, R. 474
Lundsford, G.H. 128 179 275 281
MacKay, R.S. 172 209 210 249 250 289 340 341 (342 Greene 516 532
Mackey — Glass differential delay equation see “Differential delay equation”
Mackey, M.C. 598
Magnetic confinement systems 418ff
Magnetic confinement systems, axisymmetric mirrors 648—649
Magnetic confinement systems, diffusion in see “Diffusion in toroidal magnetic fields”
Magnetic confinement systems, levitrons 361 420—424
Magnetic confinement systems, nonsymmetric mirrors 99—100 649 651
Magnetic confinement systems, tandem mirrors 458
Magnetic confinement systems, tokamaks 319—320 423 425 430—438 651
Magnetic confinement systems, toroidal see “Toroidal magnetic fields”
Magnetic confinement systems, transport in 418ff
magnetic moment 88 99—100 648—649
Mamota, H. (87 126 270 Fukuyama
Mandelbrot, B. 478 588
Manneville, P. 538 539 540 619 638
Mappings 162ff see
Mappings, area-preserving 52 167—169
Mappings, canonical 164ff
Mappings, cat 305—306
Mappings, Chirikov — Taylor see “Standard mapping”
Mappings, conversion to 170
Mappings, conversion to Hamiltonian form 171
Mappings, description of nonlinear 188ff
Mappings, dissipative generalized standard 510
Mappings, equivalence to Hamiltonian system 162ff
Mappings, Fermi see “Fermi acceleration”
Mappings, for diffusion in magnetic fields with time variations 428—431
Mappings, for diffusion of a parameter 413—415
Mappings, from perturbed linear oscillators 237ff
Mappings, generalized standard 168
Mappings, how obtained 162
Mappings, integer 311
Mappings, invertible see “Invertible maps”
Mappings, involution products for see “Involutions”
Mappings, Kaplan and Yorke 376—377
Mappings, kicked rotor 216 219
Mappings, lattice see “Spatio-temporal chaos”
Mappings, linearized 195ff
Mappings, logistic see “Logistic map”
Mappings, noninvertible see “Noninvertible maps”
Mappings, one-dimensional see “One-dimensional noninvertible maps”
Mappings, one-dimensional, for Fermi acceleration 229
Mappings, one-dimensional, for Lorenz system 69
Mappings, perturbed twist 167 200
Mappings, radial twist 168
Mappings, relation between maps and flows 302
Mappings, return 458
Mappings, reversible 202
Mappings, separatrix see “Separatrix mapping”
Mappings, standard see “Standard mapping”
Mappings, symplectic 208
Mappings, tent see “Tent map”
Mappings, twist see “Twist mapping”
Mappings, two-dimensional dissipative see “Two-dimensional dissipative maps”
Mappings, two-dimensional Hamiltonian 200ff
Mappings, whisker see “Separatrix mapping”
Mappings, Zaslavskii 477
Marcus, R.A. 654
Marinko, D. (652 Hudson
Markov process 321
Marsden, J. 380
Marsden, J.E. 45 48 213
Martin, S. 534
Maschke, E.K. 634
Maselko, J. 534
Maslov index 653
Mather, J.N. 172 250 289 290
Matrix, eigenvalues and eigenvectors for 196ff
Matrix, symplectic 197—200
Matthaeus, W.H. 638
Maurer, J. 638
May, R.M. 458 497
McDonald, S.W. 653 654
McLaughlin, J.B. 561
McNamara, B. 53 54 55 93 128 134 135 141 144 147 148 149 151 645
McNamara, B.S. 605 608
Mean residue 271—273 276—278
Mean, space and time 295 see
Meiss, J.D. 172 195 (339 Mackay 341 (342 Cary 343
Melnikov — Arnold integral 233—235 391
Melnikov's method 560ff
Melnikov's method, application to Duffing's equation 565—567
Melnikov's method, application to mappings 568—569
Melnikov, V.K. 56 186 380
Method of averaging see “Averaging method
Metropolis, N. (443 Bivins 497
Miller, B.N. 441
Mirror symmetry for quadratic map 457 481—482 490 504
Misiurewicz, M. 474
Mitropolsky, N. 1 93 103 648
Mixing 302—304 308
Mixing, for baker's transformation 60
Mixing, for hard sphere gas 60 304
Mixing, for Lagrangian turbulence in fluids 643
Mixing, for logistic map 504
Mixing, for Lorenz attractor 66
Mode-locking 466 526—528 534
Modulation, of phase or frequency 365—369
Modulational diffusion 373 399ff 647
Modulational diffusion, multiplet layer formation 364—369 400—401
Modulational diffusion, thin layer, thick layer, and trapping regimes 365—369
Momenta, generalized 8
Montgomery, D. 638
Month, M. (648 Herreraet 648
Monticello, D.A. (436 White
Montroll, E.W. (152 154 199 201 Eminhizer
Morosov, A.D. 561
Morozov, A.I. 419
Moser, J. 3 150 163 175 181 182 183 185 222 645 646
Moses, E. 640
Motz, H. 651
Multifractals 588ff see
Multiplet see “Modulational diffusion”
Murakami, S. 240
Murray, N. 336 338 339 342 (344 348 349 Lichtenberg 372
Musazzi, S. (637 Giglio
Mutual information 599
Nag, T. 541
Nagashima, T. 315
Nauenberg, M. 495
Navier — Stokes equation 65 629 634
Nayfeh, A. 134
Near-integrable systems 10 48ff
Near-integrable systems, as area-preserving mappings 167ff
Near-integrable systems, dissipative perturbation of 571ff
Near-integrable systems, Fermi acceleration 57—58
Near-integrable systems, Henon and Heiles 52—56
Nekhoroshev bound 398
Nekhoroshev, N.N. 62 398 438
Nekrasov, A.K. 650
Nevins, W.M. (429 Gell 433 434 435
Newhouse, S. 553 635
Newton's method, for solving mapping equations 168
Newton's method, relocated 157
Newton's method, superconvergence of 150—151
Nierwetberg, J. 497
Noise see “Extrinsic diffusion” “Numerical “Power
noise reduction 610—613
Noisy data 595
Nonautonomous Hamiltonian see “Hamiltonian nonautonomous”
Noninvertible maps 65 532—533 535—537 see
|
|
|
Ðåêëàìà |
|
|
|