|
![blank](/z.gif) |
Àâòîðèçàöèÿ |
|
![blank](/z.gif) |
Ïîèñê ïî óêàçàòåëÿì |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
|
![blank](/z.gif) |
![Êðàñîòà](/img/main/1.jpg) |
|
![blank](/z.gif) |
|
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics |
|
![blank](/z.gif) |
Ïðåäìåòíûé óêàçàòåëü |
Euler equations 214—215
Expansions see also “Perturbation theory”
Expansions, asymptotic 75 93—95
Expansions, eliminate secularity 74—75
Expansions, power series 73ff
Expansions, superconvergent 149ff
Extrinsic diffusion 349ff 360ff 373 406ff see
Extrinsic diffusion, from a simple calculation 354—357
Extrinsic diffusion, in Fermi acceleration 351—352
Extrinsic diffusion, in the presence of resonances 353ff
Extrinsic diffusion, limit to global stochasticity determination 351
Extrinsic diffusion, using Fourier paths 353—354
Farmer, J.D. 68 478 (478 Packard 528 531 602 603 605 607 610 611 615 618
Feigenbaum, M.J. 6 458 485 487 491 492 494 507 531
Feit, S.D. 473
Fenstermacher, R. 635
Fermi acceleration 57—59 216ff
Fermi acceleration, absolute barrier 225
Fermi acceleration, bifurcation phenomena 226ff
Fermi acceleration, comparison with overlap criterion 264
Fermi acceleration, conversion to standard mapping 250—251
Fermi acceleration, dissipative mapping 574
Fermi acceleration, exact mapping 216—217
Fermi acceleration, fixed points 223
Fermi acceleration, Fokker — Planck solutions for 326ff
Fermi acceleration, Hamiltonian formulation 229ff
Fermi acceleration, invariant distribution for dissipative 583—588
Fermi acceleration, linear stability 223—225
Fermi acceleration, models for 216ff
Fermi acceleration, numerical results 220ff
Fermi acceleration, sawtooth wall velocity 221—222
Fermi acceleration, simplified mapping 217—218
Fermi acceleration, stochastic transition velocity 224—225
Fermi acceleration, transient chaos in 574—576
Fermi acceleration, transport coefficients for 324—326
Fermi acceleration, two-frequency 292 440
Fermi — Pasta — Ulam system 443ff
Fermi, E. 2 57 191 216 439 443
Fibonacci numbers 530
Field, R.J. 652
Filamentation see “Coarse-graining”
Filonenko, N.N. 423 425
Finn, J.M. 45 48 134 168 186 187 210 213 423
Fixed points 49
Fixed points, bifurcations for Fermi mapping 226—229
Fixed points, elliptic 42 183—185 205—206
Fixed points, expanding about 113 119
Fixed points, for Fermi mapping 223—225
Fixed points, for quadratic DeVogelaere map 518
Fixed points, for quadratic map 482ff
Fixed points, for separatrix mapping 236—237
Fixed points, for standard mapping 253—256
Fixed points, for two-dimensional mappings 200—201
Fixed points, hyperbolic 184 185—187 206—207 560ff
Fixed points, linearizing about elliptic 114
Fixed points, of twist mapping 166
Fixed points, reflection and ordinary hyperbolic 206—207
Fluids, chaotic behavior in 628ff 638ff
Foias, C. 634
Fokker — Planck equation 32ff
Fokker — Planck equation, canonical variables 325—326
Fokker — Planck equation, diffusion and friction coefficients 322
Fokker — Planck equation, for invariant distributions on strange attractors 583—585
Fokker — Planck equation, for transient chaos 572—576
Fokker — Planck equation, steady-state solutions 326—327 337
Fokker — Planck equation, transient solutions 326—327
Fokker — Planck equation, transport coefficients 324ff
Fokker — Planck equation, validity of 323—324
Foote, J.H. (94 648 Cohen
Ford, J. 38 (62 Chirikov 128 179 216 275 281 293 298 303 (312 Casati 315 (398 Chirikov 441 443 444 (644 Casati 645 654
Forecasting see “Reconstruction”
Forest, E. 173
Fourier mode expansions for fluid systems 630ff
Fourier path technique 329ff 353—357
Fourier spectra see also “Power spectra of trajectories”
Fractal diagrams 275 279—281
Fractal dimension 474—478
Fractal dimension, capacity 577 588
Fractal dimension, correlation dimension 589 591
Fractal dimension, embedding 591 598ff
Fractal dimension, for period-doubling 595
Fractal dimension, for quasiperiodicity 596
Fractal dimension, for two-scale Cantor set 593—594
Fractal dimension, generalized 588ff
Fractal dimension, Hausdorff 551 590
Fractal dimension, information dimension 576—578
Fractal dimension, multifractals 588ff
Fractal dimension, reconstruction from time series 602ff
Fractal dimension, relation to Liapunov exponents 474—478 591 602
Fractal dimension, scaling index spectrum 588 592ff
Fractal generator 591
Fractal, fat 528
Fraser, A.M. 599 600 601 602 604
Frederickson, P. 602
Freis, R.P. 419 421 423 424
Friction coefficient 322
Friction coefficient, relation to diffusion coefficient 322
Frisch, U. 630
Froehling, H. (68 Farmer) 478
Froeschle, C 298 315 373 380 381 440
Fukuyama, A. 87 126 248 270 271
Gadiyak, G.M. 374
Galeev, A. A. 428 435
Galerkin approximation see “Fourier mode expansions”
Galgani, L. (213 245 298 Benettin 298 299 (301 305 315 316 317 318 319 Benettin (326 Contopoulos (438 441 445 Benettin
Garren, A. 649
Garrido, L.M. 134 645
Geisel, T. 497 643
Gell, Y. 429 (429 433 434 435 Nevins
Generating function 173
Generating function, Fourier series for 80
Generating function, harmonic oscillator 23
Generating function, Lie 12 135
Generating function, mixed variable 8—9 21
Generating function, near-identity 97
Generating function, relation to phase space area 171
Generating function, rotating coordinates 110
Generating function, use in perturbation theory 79
Giacaglia, G.E.O. 81 93 134 141
Gibson, G. 649
Giglio, G. 637
Giorgilli, A. (301 305 Benettin (326 Contopoulos (438 445 Benettin
Glass, L. 532 598
Glazier, J.A. 594 595
Goedde, C.G. 491 585
Golden mean 249 274 277 288 291
Goldstein, H. 7 36 47
Gollub, J.P. 635 636 637
Gorman, M. 635
Gormezano, C 651
Goward, F.K. 647
Gramaticos, B. 43
Grassberger, P. 478 576 577 578 589 590 591 592 603 604 606
Grawe, H. 650
Graziani, K.R. (652 Schmits
Grebogi, C 549 550—560 571 576 579 580 590 591 597
Green, G.K. 647
Greene's method 248—249 271ff 291
Greene's method, continued fraction approximates 273—276
Greene's method, golden mean 274 277
Greene's method, mean residue 271—273 276—277
Greene's method, numerical procedure 276
Greene's method, numerical results 276—278
Greene, J. 4 169 182 200 202 248 254 257 271 273 275 276 278 311 341 514 517 518 519
Greenspan, B. 561
Grossmann, S. 504 506
Guarneri, I. (653 Casati
Guckenheimer, J. 468
Guest, G. (650 Samec
Guiding center, Hamiltonian 102
| Guiding center, variables 87—88
Gustavson, F. 54 56 645
Gwinn, E.G. 594
Gyorgyi, G. 523 524 525
Haas, F.A. (99 Hastie
Hall, L. 41 43
Halsey, T.C. 478 589 590 592 593 594
Hamilton — Jacobi equation 10 21
Hamilton — Jacobi equation, for central force 35
Hamilton's characteristic function 10
Hamilton's equations 8
Hamilton's principal function 10
Hamiltonian, accidentally degenerate see “Degeneracy accidental”
Hamiltonian, action-angle form 78
Hamiltonian, autonomous 10 11 14—15 288
Hamiltonian, average part 80 98
Hamiltonian, canonical transformation of 9 79
Hamiltonian, conversion to a mapping 170—171
Hamiltonian, definition of 8
Hamiltonian, for free particle 375—378
Hamiltonian, for harmonic oscillator 23 116
Hamiltonian, for two resonances 281—282
Hamiltonian, formulation for Fermi mapping 229ff
Hamiltonian, formulation for standard mapping 256—258
Hamiltonian, Fourier series for 80 111—112
Hamiltonian, higher order expansion 81
Hamiltonian, intrinsically degenerate see “Degeneracy intrinsic”
Hamiltonian, nonautonomous 14—15
Hamiltonian, oscillating part 80 98
Hamiltonian, standard 29 113
Hamiltonian, superconvergent transformation of 152—154
Hammel, S.M. 610 612
Hamzeh, F.M. (419 421 424 Freis
Hanson, J.D. 43 425 (476 477 Russell (654 Ott
Hard sphere gas 60 304 442 654
harmonic oscillator 23—24
Harmonic oscillator, adiabatic invariant of 100
Harmonic oscillator, effect of resonance 77
Harmonic oscillator, Hamiltonian 23 116
Harmonic oscillator, with slowly varying frequency 75—77 100—102 106—109
Hart, M. 429 (652 Hudson
Harte, J. (429 Gell (429 433 434 439 Nevins
Hartman, C.W. (419 421 423 Freis
Hasegawa, A. 240
Hastie, R.J. 99 648
Hatori, T. 348 651
Hausdorff 590
Hausdorff dimension 551 590 see “Hausdorff”
Hauss, B.L. (650 Samec
Heating, stochastic 650—651 see
Heating, stochastic, at electron cyclotron resonance 650—651
Heating, stochastic, at ion cyclotron resonance 650—651
Heating, stochastic, with two frequencies 650—651
Heiles, C 9 38 52 294 298 645
Heinrichs, R. 640 641
Helleman, R.H.G. 66 (152 154 Eminhizer 154 157 158 160 (195 201 Eminhizer 201 273 293 458 485 490 504 509 513 515 516 633 654
Henon attractor 472—474
Henon attractor, fractal dimension of 477
Henon attractor, invariant distribution for 581—582
Henon attractor, map in quadratic form 510
Henon attractor, noise reduction for 611—613
Henon attractor, reconstruction of 609
Henon — Heiles system 52—57 645
Henon — Heiles system, high-order fixed-point destabilization in 281
Henon — Heiles system, integrability conditions for 42—43
Henon — Heiles system, KS entropy for 316—318
Henon — Heiles system, periodic orbits in 158—161
Henon — Heiles system, quantized 654
Henon — Heiles system, relation to Toda lattice 38
Henon, M. 4 39 52 191 192 294 298 468 472 473 645
Hentschel, H.G.E. 589
Hereward, H.G. 647
Herman, M.R. 289
Herrera, J.C. 648
Hertweck, F. 94 648
Heteroclinic points 186—187
Hicks, H.R. (436 437 Carreras
Hietarinta, J. 43
Hiibler, A. 608 610
Hine, M.G.N. 647
Hirakawa, K. (653 Yamazaki
Hiroe, S. (651 Watari
Hirsch, J.E. 540 543 545
Hizanidis, K. 364
Hobbs, G.D. (648 Hastie
Hohs, S. 219
Holm, D. 48 213
Holmes, P.J. 48 380 458 468 561 565 567 569
Holt, C.R. 41
Homoclinic intersection 560ff
Homoclinic intersection, in Duffings equation 565—567
Homoclinic intersection, in mappings 568—569
Homoclinic points 186—187 309 604
Hori, G. 134 645
Howard, J.E. 94 209 210 211 219 292 440 648
Howard, L.N. 652
Howland, R.A. 134 151
Hu, B. 538 543
Huberman, B.A. 498 506 507 557 637
Hudson, J.L. (652 Schmits 652
Hyperbolic orbits, for two-dimensional mappings 206—207
Hyperbolic point see “Fixed point hyperbolic”
Ichikawa, Y.H. 348 349
Ichimaru, S. (651 Watari
indstedt, M. 71 74
Information dimension 576—578
Integrable systems 24ff
Integrable systems, central force 33—36
Integrable systems, finding 39—43
Integrable systems, harmonic oscillator 23—24
Integrable systems, linear 29—32
Integrable systems, Painleve property 43
Integrable systems, pendulum 25—29
Integrable systems, soliton solutions 43 376
Integrable systems, Toda lattice 36—39
Integrable systems, Whittaker method 39
Integral, isolating 24 33 381 648
Integral, isolating, for Toda lattice 39
Integration, symplectic 172
Intermittency 537ff
Intermittency, in lattice maps 617—619
Intrinsic degeneracy see “Degeneracy intrinsic”
Intrinsic diffusion see “Diffusion”
Invariant distribution 498ff 580ff
Invariant distribution, by reduction to a one-dimensional map 581ff
Invariant distribution, calculation of 580ff
Invariant distribution, for a Hamiltonian system 580
Invariant distribution, for dissipative Fermi map 583—588
Invariant distribution, for Henon attractor 581—582
Invariant distribution, for logistic map 500—501
Invariant distribution, for tent map 502
Invariant distribution, for two-dimensional maps 580ff
Invariant distribution, from the Fokker — Planck, equation 583ff
Invariant distribution, phase averaged 583—585
Invariant measure see “Invariant distribution”
Invariant, adiabatic 17 24 71 93ff
Invariant, circle 290
Invariant, curve see “KAM curve”
Invariant, exponential variation of 94
Invariant, for secondary resonances 120
Invariant, for wave-particle interaction 90
Invariant, global 24
Invariant, hierarchy of 99—100
Invariant, in rotating coordinates 111
Invariant, integral 13—14
Invariant, relative integral 15
Invertible maps 459
Invertible maps, chaotic behavior in 460 509
Invertible maps, one-dimensional 478 497
Involution, integrals in 24
|
|
![blank](/z.gif) |
Ðåêëàìà |
![blank](/z.gif) |
|
|