Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Veblen O., Young J.W. — Projective Geometry. Vol 1
Veblen O., Young J.W. — Projective Geometry. Vol 1



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Projective Geometry. Vol 1

Авторы: Veblen O., Young J.W.

Аннотация:

The present work, which is to consist of two volumes and is intended to be available as a text in courses offered in American universities to upper-class and graduate students, seeks to avoid this difficulty by deferring the study of order and continuity to the second volume. The more elementary part of the subject rests on a very simple set of assumptions which characterize what may be called "general projective geometry." It will be found that the theorems selected on this basis of logical simplicity are also elementary in the sense of being easily comprehended and often used.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1946

Количество страниц: 350

Добавлена в каталог: 05.07.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Enriqnes, F.      56 286
Equation, of conic      185 245
Equation, of line (point)      174
Equation, of plane (point)      193 198
Equation, quadratic, has roots in extended space      242
Equation, reducible, irreducible      239
Equivalent number systems      150
Extended space      242 255
Extension, assumptions of      18 24
Face of n-point or n-plane      36 37
Fermat, P.      285
Field      149
Field, extended, in which any polynomial is reducible      260
Field, finite, modular      201
Field, pointy on a line form a      151
figure      34
Fine, H.B.      255 260 261 289
Finite spaces      201
Five-point, diagonal points, lines, and planes of, in space      204 exs.16 17 18
Five-point, in space may be transformed into any other by projective collineation      77
Five-point, plane section of, in space      39
Five-point, simple, in space determines linear congruence      319
Five-points, perspective, in four-space      54 ex.
Fixed element of correspondence      68
Flat pencil      55
Forms, linear binary      251
Forms, of nth degree      254
Forms, one-dimensional, of second degree      109
Forms, polar forms      256
Forms, primitive geometric, of one, two, and three dimensions      55
Forms, quadratic binary      252
Forms, ternary bilinear, represents correlation in plane      267
Four-space      25 ex.
Frame of reference      174
Fundamental elements      1
Fundamental points of a scale      141 231
Fundamental propositions      1
Fundamental theorem of projectivity      94—97 213 264
General point      129
Geometry, associated with a group      259
Geometry, distinction between projective and metric      12
Geometry, finite      201
Geometry, object of      1
Geometry, starting point of      1
Gergonne, J.D.      29 123
Grade, geometric forms of first, second, third      55
Group      66
Group, commutative      70
Group, examples of      69 70
Group, general projective, in plane      268
Group, general projective, on line      68 209
Group, of correspondences      67
Harmonic conjugate      80
Harmonic homology      223
Harmonic involutions      224
Harmonic set      80—82
Harmonic set, cross ratio of      159
Harmonic set, exercises on      83 84
Harmonic transformations      230
Harmonically related      84
Hesse      125
Hessenberg, G.      141
Hexagon, simple, inscribed in conic      110 111
Hexagon, simple, inscribed in three concurrent lines      250 ex.
Hexagon, simple, inscribed in two intersecting lines      99
Hexagram      304 ex.
Hexagram, of Pascal (hexagramma mysticum)      138 exs.19—21
Hilbert, D.      3 95 148
Holgate, T.F.      119 125 139
Homogeneous coordinates in plane      174
Homogeneous coordinates, geometrical significance of      165
Homogeneous coordinates, in space      11 194
Homogeneous coordinates, on line      163
Homogeneous forms      254
Homologous elements      35
Homology, axis and center of      104
Homology, canonical form of, in plane      274 275
Homology, harmonic      223 275
Homology, in plane      72
Homology, in space      75
Hyperosculate, applied to two conies      136
Ideal elements      7
Ideal points      8
Identical correspondence      65
Identical matrix      157 269
Identity (correspondence)      65
Identity (correspondence), element of group      67
Improper elements      239 241 242 255
Improper transformation      242
Improperly projective      97
Independence, necessary for distinction between assumption and theorem      7
Independence, of assumptions      6
Index, of group of collineations in general projective group in plane      271
Index, of subgroup      271
Induced correlation in planar field      262
Infinity, points, lines, and planes at      8
Inscribed and circumscribed triangles      98 250 ex.
Inscribed figure, in a conic      118
Invariant element      68
Invariant figure, of collineation is self-dual      272
Invariant figure, under a correspondence      67
Invariant subgroup      211
Invariant triangle of collineation, relation between projectivities on      274 276 ex.
Invariant, of binary form of nth degree      257
Invariant, of quadratic binary forms      252—254 ex.
Invariant, of two linear binary forms      252
Inverse operations (subtraction, division)      148 149
Inverse, of a correspondence      65
Inverse, of element in group      67
Inverse, of projectivity is a projectivity      68
Inverse, of projectivity, analytic expression for      157
Involution      102
Involution, analytic expression for      157 222 254 ex.
Involution, belonging to a projectivity      226
Involution, characteristic cross ratio of      206
Involution, complexes in      333
Involution, condition for      254 ex.
Involution, double points of, determined by covariant      258
Involution, double points of, in extended space      242
Involution, on conic      222—230
Involution, theorems on      102 103 124 127—131 133 134 136 206 209 221—229 242—243
Involutions, any projectivity is product of two      223
Involutions, harmonic      224
Involutions, pencil of      225
Involutions, two, have pair in common      243
Involutions, two, on distinct lines are perspective      243
Involutoric correspondence      66
Irreducible equation      239
Isomorphism      6
Isomorphism, between number systems      150
Isomorphism, simple      220
Jackson, D.      282
Join      16
Kantor, S.      250
Klein, F.      95 333 334
Ladd, C      138
Lage, Geometrie der      14
Lennes, N.J.      24
Lindemann, F.      289
Line conic      109
Line coordinates, in plane      171
Line coordinates, in space      327 333
Line, and conic, intersection of      240 246
Line, and plane on the same three-space intersect      22
Line, as undefined class of points      15
Line, at infinity      8
Line, equation of      174
Lineal element      107
Linear binary forms      251
Linear binary forms, invariant of      251
Linear dependence, of lines      311
Linear dependence, of points      30
Linear fractional transformation      152
Linear net      84
Linear operations      236
Linear transformations, in plane      187
Linear transformations, in space      199
Lines, two, in same plane intersect      18
Luroth, J.      95
Maclaurln, C      119
MacNeish, H.F.      46
Mathematical science      2
Matrices, determinant of product of two      269
Matrices, product of      156 268
Matrix, as operator      270
Matrix, as symbol for configuration      38
Matrix, characteristic equation of      165 272
Matrix, conjugate, transposed, adjoint      269
Matrix, definition      156
Matrix, identical      157 269
Matrix, used to denote projectivity      156
Menachmus      126
Metric geometry      12
Midpoint of pair of points      230 ex.
Mobius tetrahedra      105 ex. 326 ex.
Multiplication of points      145 231
Multiplication of points, commutative law of, is equivalent to Assumption P      148
Multiplication of points, other definitions of      167 exs.3 4
Multiplication of points, theorems on      145—148
n-line, complete or simple      37 38
n-line, inscribed in conic      138 ex.
n-plane, complete in space      37
n-plane, on point      38
n-plane, simple in space      37
n-point      54 ex. 250 ex.
n-point, complete, in a plane      37
n-point, complete, in space      36
n-point, inscribed in conic      119 ex.
n-point, m-space section of, in (n + l)-space      54 ex.
n-point, plane section of, in space      53 exs.13 16
n-point, section by three-space of, in four-space      54 ex.
n-point, simple, in a plane      37
n-point, simple, in space      37
n-points, in different planes and perspective from a point      42 ex.
n-points, in same plane and perspective from a line      42 ex.
n-points, mutually inscribed and circumscribed      250 ex.
n-points, two complete, in a plane      53 ex.
n-points, two perspective, in (n—l)-space, theorem on      54 ex.
Net of rationality, coordinates in      162
Net of rationality, in plane      86
Net of rationality, in plane (space) left invariant by perspective collineation      93 exs.9 10
Net of rationality, in plane, theorems on      87 88 exs.92 93
Net of rationality, in space      89
Net of rationality, in space is properly projective      97
Net of rationality, in space, theorems on      89—92 exs.92 93
Net of rationality, on line (linear net)      84
Net of rationality, on line (linear net), theorems on      85
Newson, H.B.      274
Nonhomogeneous coordinates, in plane      169
Nonhomogeneous coordinates, in space      190
Nonhomogeneous coordinates, on a line      152
Null system      324
Number system      149
ON      7 8 15
Operation, geometric      236
Operation, linear      236
Operation, one-valued, commutative, associative      141
Operator, differential      256
Operator, polar      284
Operator, represented by matrix      270
Opposite sides of complete quadrangle      44
Opposite vertex and side of simple n-point      37
Opposite vertices, of complete quadrilateral      44
Opposite vertices, of simple n-point      37
Oppositely placed quadrangles      50
Order      60
Ordinate      170
Origin of coordinates      169
Osculate, applied to two conies      134
Padoa, A.      3
Papperitz, E.      309
Pappus, configuration of      98 99 100 126 148
Parabolic congruence      315
Parabolic point of collineation in plane      274
Parabolic projectivities, any two, are conjugate      209
Parabolic projectivity      101
Parabolic projectivity, analytic expression for      207
Parabolic projectivity, characteristic constants      207
Parabolic projectivity, characteristic cross ratio of      206
Parabolic projectivity, gives H(MA', AA")      207
Parametric representation, of conic      234
Parametric representation, of points (lines) of pencil      182
Parametric representation, of regulus, congruence, complex      330 331
Pascal, B.      36 99 111—116 123 126 127 138 139
Pencil, base points of      182
Pencil, of complexes      332
Pencil, of conies      129—136 287—293
Pencil, of involutions      226
Pencil, of points (lines), coordinates of      181
Pencil, of points, planes, lines      55
Pencil, parametric representation of      182
Period of correspondence      66
Perspective (n + l)-points in n-space      54 exs.20 26
Perspective collineation, in plane      71
Perspective collineation, in plane defined when center, axis, and one pair of homologous points are given      72
Perspective collineation, in space      75
Perspective collineation, leaving $R^2$ ($R^3$) invariant      93 exs.9 10
Perspective conic and pencil of lines (points)      215
Perspective correspondence      12 13
Perspective correspondence, between two planes      71 277 ex.
Perspective figures, from a line      36
Perspective figures, from a point or from a plane      35
Perspective figures, if A, B, C and A', B', C' on two coplanar lines are perspective, the points (AB', BA'), (AC', CA'), and (BC, CB') are collinear      52 ex.
Perspective geometric forms      56
Perspective n-lines, five-points in four-space      54 ex.
Perspective n-lines, theorems on      84 exs.13 14
Perspective tetrahedra      43
Perspective triangles      54 ex. 246 84 exs.7 10 11
Perspective triangles, sextuply      246
Perspective triangles, theorems on      41 53 exs.9 10 11
Perspectivity, between conic and pencil of lines (points)      215
Perspectivity, center of, plane of, axis of      36
Perspectivity, central and axial      57
Perspectivity, notation for      57
Pieri, M.      95
Planar field      55
Planar net      86
Plane figure      34
Plane section      384
Plane, and line on same three-space are on common point      22
Plane, at infinity      8
Plane, defined      17
Plane, determined uniquely by three noncollinear points, or a point and line, or two intersecting lines      20
Plane, equation of      193 198
Plane, of lines      65
Plane, of perspectivity      36 75
Plane, of points      55
Planes, three, on a three-space and not on a common line are on a common point      23
Planes, two, on same three-space are on a common line, and conversely      22
Planes, two, on two points A, B are on all points of line AB      20
Plucker's line coordinates      327
Point conic      109
Point figure      34
Point, and line determine plane      17 20
Point, as undefined element      15
Point, at infinity      8
Point, equation of      174 193 198
Point, of contact of a line with a conic      112
Points, three, determine plane      17 20
polar      84 exs.7 9 10 11
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте